
Math 3220 § 2.
Treibergs

First Midterm Exam Name: Solutions
January 29, 2020

1. Let F,G ⊂ Rd. Define: G is an open set. Define: F is a closed set. Using just your
definitions, show that the line L = {(x, y) ∈ R2 : x = y} is closed.

G is open if for every x ∈ G there is r > 0 so that Br(x) ⊂ G, where the open ball of radius
r about x is given by Br(x) = {y ∈ Rd : ‖x− y‖ ≤ r}.
F is closed if its complement F c is open.

To show L is closed, we show that its complement Lc is open. Choose (x, y) ∈ Lc. Then
x 6= y. Let r = 1

2 |x−y| > 0 to show that Br(x, y) ⊂ Lc. To do this, choose (u, v) ∈ Br(x, y)
so ‖(x, y) − (u, v)‖ < r to show (u, v) /∈ L, or in other words, u 6= v. Using the reverse
triangle inequality

|u− v| = |(x− y)− (x− u)− (v − y)| ≥ |x− y| − |x− u| − |v − y|

≥ |x− y| − 2‖(x− u, y − v)‖ > r − 2

(
1

2
r

)
= 0.

Thus all points of Br(x, y) miss L, thus Br(x, y) ⊂ Lc, so Lc is open and L is closed.

2. Let {xn} ∈ Rd be a sequence and x,v ∈ Rd. Define: xn → x as n → ∞. Recall that the
one-norm ‖x‖1 = |x1|+ |x2|+ · · ·+ |xd| is the sum of the absolute values of the components
of x = (x1, . . . , xd). Suppose xn → x as n→∞. Show that

zn = xn · v + ‖xn − x‖1 → x · v as n→∞.

xn → x as n→∞ means that for all ε > 0 there is N ∈ R such that

‖xn − x‖ < ε whenever n > N ,

where ‖x‖ denotes the Euclidean norm.

The one-norm is bounded by the Euclidean norm since for all y,

‖y‖1 = |y1|+ · · · |yd| ≤ ‖y‖+ · · ·+ ‖y‖ = d‖y‖.

To show that {zn} converges, choose ε > 0. By the convergence of {xn}, there is N ∈ R
such that

‖xn − x‖ < ε

‖v‖+ d
whenever n > N ,

For n > N and using the Schwarz inequality,

|zn − x · v| = |xn · v + ‖xn − x‖1 − x · v|
= |(xn − x) · v + ‖xn − x‖1|
≤ |(xn − x) · v|+ ‖xn − x‖1
≤ ‖xn − x‖ ‖v‖+ d‖xn − x‖
≤ ‖xn − x‖ (‖v‖+ d)

<
ε

‖v‖+ d
(‖v‖+ d) = ε.

Thus zn → x · v as n→∞.
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3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: Let Oi ⊂ R2 be an open set for every i ∈ N. Then the intersection⋂
i∈N
Oi is open.

False. Let Oi = B1/i(0) be the balls about the origin of radius 1
i which are open in

R2. Then
⋂
i∈N
Oi = {(0, 0)}, a single point, which is not open.

(b) Statement: Let E ⊂ Rd. If every sequence {xn} ⊂ E has a subsequence that
converges to a point of E, then E is compact.

True. We show that E is closed and bounded, therefore compact by the Heine
Borel Theorem. To see that E is closed, we only need to check that it contains the
limit points of its convergent subsequences. But by assumption, such sequences have
convergent subsequences that converge to a point of E. However, the subsequential
limit of a convergent sequence is the limit, thus is a point of E. Hence, E is closed.

To see E is bounded, argue by contrapositive. If E were not bounded, then choose
a sequence as follows: let x1 ∈ E be any. By unboundedness, choose x2 ∈ E such
that ‖x2‖ > ‖x1‖+ 2. Continue the same way: if x1, . . . ,xk have been chosen, choose
xk+1 ∈ E such that ‖xk+1‖ ≥ k+ 1 + ‖xk‖. The resulting sequence has no convergent
subsequence since every subsequence is unbounded: the norms of terms in every sub-
sequence tend to infinity. Thus the condition fails: there is a sequence that does not
have any convergent subsequence.

This condition on E is called sequential compactness.

(c) Let E ⊂ Rd. If both the interior E◦ and the boundary ∂E are connected, then E is
connected.

False. Consider the set

E = {(x, y) ∈ R2 : 0 ≤ x ≤ 2, 0 ≤ y ≤ 1 and x is rational if x < 1}.

Then ∂E = [0, 1]× [0, 1] ∪ {(x, y) ∈ (1, 2]× [0, 1] : x = 2 or y = 0 or y = 1} and E◦ =
(1, 2)× (0, 1) are both connected but E is not: U = (−∞, r)×R and V = (r,∞)×R
is a separation of E, where r ∈ (0, 1) is any irrational.

4. Let (X, d) be a metric space and K ⊂ X. Define: the set K is compact. Let K and C be
subsets of the metric space X. Using just your definition, show that if K is compact and C
is closed then K ∩ C is compact.

K is compact if every open cover has a finite subcover. That is, if Oα are open sets for all
α ∈ A such that K ⊂

⋃
α∈AOα, then there are finitely many α1, . . . , α` such that

K ⊂ Oα1
∪ · · · ∪ Oα`

.

To show K ∪ C is compact, take any open cover {Oα}α∈A. By augmenting the cover by

another open set Cc, the complement of C, we have a cover K ⊂
(⋃

α∈AOα
)
∪ Cc. By

compactness, there are finitely many α1, . . . , α` such that

K ⊂ Oα1
∪ · · · ∪ Oα`

∪ Cc,

where we’ve thrown in Cc whether we need it or not. It follows that the smaller set

K ∩ C ⊂ Oα1 ∪ · · · ∪ Oα`
.

We have shown that any cover has a finite subcover, thus K ∩ C is compact.
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5. Let E,F ⊂ Rd. Define: E, the closure of E. State a theorem that gives a condition for
x ∈ Rd to be a point of E. Prove that E ∪ F =

(
E
)
∪
(
F
)
.

The closure of E is the smallest closed set that contains E. Using the fact that intersections
of closed sets are closed, this may be written

E =
⋂
{F : F is closed and E ⊂ F}

Theorem. Let E ⊂ Rd and x ∈ Rd. Then x ∈ E if and only if for all r > 0 we have
Br(x) ∩ E 6= ∅.
To show E ∪ F = E ∪ F we show E ∪ F ⊂ E ∪ F and E ∪ F ⊃ E ∪ F .

To show E ∪ F ⊂ E ∪F choose x ∈ E ∪ F . Hence for all n ∈ N we have B1/n(x)∩(E∪F ) 6=
∅ by the theorem. Thus, for each n either B1/n(x)∩E 6= ∅ or B1/n(x)F 6= ∅. Thus infinitely
many n’s meet one set or the other, otherwise B1/n(x) ∩ (E ∪ F ) = ∅ for large n. Say that
E is met infinitely often, i.e., there is a subsequence nj increasing to infinity such that
B1/nj

(x) ∩ E 6= ∅ for all j. But this implies Br(x) ∩ E 6= ∅ for all r > 0. This is because,
for any r > 0 there is j such that r > 1/nj and so Br(x)∩E ⊃ B1/nj

(x)∩E 6= ∅. It follows

that x ∈ E, thus x ∈ E ∪ F . If F was met infinitely often instead, swap the roles of E and
F in the remainder of the argument.

To show E ∪ F ⊂ E ∪ F choose x ∈ E ∪ F . Hence x ∈ E or x ∈ F . Say x ∈ E. Then for
all r > 0 we have Br(x) ∩E 6= ∅. It follows that for all r > 0 we have Br(x) ∩ (E ∪ F ) 6= ∅
which is a larger set. Thus x ∈ E ∪ F . A similar argument holds in case x ∈ F instead.

In contrast, note that E ∩ F = E ∩ F fails sometimes. For example, if E = (0, 1) and
F = (1, 2) in R, then E ∩ F = ∅ but E ∩ F = {1}.

3


