
Math 3220 § 2.
Treibergs

Third Midterm Exam Name: Solutions
November 20, 2019

1. Let U ⊂ R2 be the set consisting of the line segments from (0, 8) to (0, 0) to (5, 0) to (5, 8)
pictured below. Determine whether U is a Jordan Region and find its upper and lower
volumes. Explain. What is the lower volume V (U)? What is the upper volume V (U)?

The set is a region of volume zero, hence a Jordan region whose upper and lower volumes
are zero V (U) = V (U) = 0. To see this, we shall use the Theorem about zero volume sets:
a bounded set U ⊂ R2 has volume zero if and only if for every ε > 0 there is a finite cover
of U by aligned rectangles of total volume less than ε. Choose ε > 0. Take three sets that
cover the three sides of U

R1 = [−ε, ε]× [−ε, 8 + ε]; R2 = [−ε, 5 + ε]× [−ε, ε], R3 = [5− ε, 5 + ε]× [−ε, 8 + ε].

These sets cover: U ⊂ R1 ∪R2 ∪R3. But the total volume is

V (R1) + V (R2) + V (R3) = 2ε(8 + 2ε) + (5 + 2ε)2ε+ 2ε(8 + 2ε) = 42ε+ 12ε2

which can be made arbitrarily small since we may choose ε as small as we please. Hence U
has volume zero.

2. Let R ⊂ Rd be an aligned rectangle, g : R → R be a bounded function and A ⊂ R be a
subset. State the definition: g is integrable on R. State the definition: g is integrable on
A. Let S = [0, 3] × [0, 3], B = {(x, y) ∈ S : x2 + y2 ≤ 7} and f(x, y) = bxc + byc, where
the “floor” (or greatest integer) function is given by bxc = n where n is an integer such
that n ≤ x < n + 1. The values of f on the interiors and the left and bottom edges of the
unit squares are given in the lower left corners of the squares. Using the theorems from the
text, determine whether this f is integrable on B. (You do not need to integrate.) For the
partition P = {{0 < 1 < 2 < 3}, {0 < 1 < 2 < 3}} of S, determine the lower and upper
sums for f on B. What does this say about

∫
B
f dV assuming f is integrable on B?

The bounded function g is integrable on R if lower integral equals the upper integral∫
R

g dV =

∫
R

g dV,

where ∫
R

g dV = sup
P
L(g,P),

∫
R

g dV = inf
P
U(g,P),

1



where sup and inf are taken over partitions P of R .

g is integrable on A if for any aligned rectangle R containing A, the function gA = χAg is
integrable on R, where χA is the characteristic function of A. In other words

gA(x) =

{
1, if x ∈ A;

0, otherwise.

The region B is defined by

B =
{

(x, y) ∈ R2 : 0 ≤ x ≤
√

7, 0 ≤ y ≤
√

7− x2
}
.

This is a closed and bounded region, hence compact. Furthermore, because the upper
and lower functions ψ(x) = 0 and φ(x) =

√
7− x2 are continuous on [0,

√
7], the region

B is a Jordan Region, according to our homework problem. Indeed, one can check that
V (∂B) = 0. The function is piecewise continuous. The discontinuity set is

E = {(x, y) ∈ R : f is not continuous at (x, y)}

which is contained in the set of lines at the integers

L = {(x, y) ∈ R2 : x ∈ {0, 1, 2, 3} and 0 ≤ y ≤ 3}
∪ {(x, y) ∈ R2 : 0 ≤ x ≤ 3 and y ∈ {0, 1, 2, 3} }

which has volume zero. But a function defined on a Jordan Region, whose discontinuities
are contained in a set of volume zero is integrable, by a theorem in the text and covered in
class.

Finally, we compute the upper lower sum and upper sum for fB = χBf . Letting mij denote
the inf and Mij denote the sup in each of the unit squares, we see that

mij = 0 0 0

1 0 0

0 1 0

Mij = 3 3 0

3 3 3

2 3 3

For example in the lower left closed square, the function is zero except on the x = 1 and
y = 1 edges where f = 1 and f(1, 1) = 2 at the corner. Thus m11 = 0 and M11 = 2. Thus
the lower and upper sums are

L(fB ,P) =
∑

mijV (Rij) = (0 + 1 + 0 + 1 + 0 + 0 + 0 + 0 + 0) · 1 = 2,

L(fB ,P) =
∑

MijV (Rij) = (2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 0) · 1 = 23.

It follows that

2 = L(fB ,P) ≤
∫
R

fB dV =

∫
B

f dv ≤ U(fB ,P) = 23.
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3. (a) Complete the statement of the following theorem:

Theorem. Let R ⊂ R2 be an aligned rectangle and f : R→ R be a bounded function.
Then f is integrable on R if and only if

for every ε > there is a partition P of R such that U(f,P)− L(f,P) < ε.

(b) Using just your theorem , prove that f(x, y) is integrable on R = [0, 8]× [0, 6] where

f(x, y) =

{
1, if 3 < x < 6 and 2 < y < 4;

0, otherwise.

Choose ε > 0. Consider the partition P = {{0, 3, 3+ε, 6−ε, 6, 8}, {0, 2, 2+ε, 4−ε, 4, 6}}.
Then Mij = mij = 0 for the sixteen outside subrectangles; Mij = 1 and mij = 0
for the next concentric eight subrectangles along the boundary of [3, 6] × [2, 4] and
Mij = mij = 1 for the center subrectangle. Thus, only the eight touching the boundary
of (3, 6)× (2, 4) survive in

U(f,P)− L(f,P) =
∑
ij

(Mij −Mij)V (Rij)

= (1− 0)
(
V (R22) + V (R23) + V (R24) + V (R32)+

+ V (R34) + V (R42) + V (R43) + V (R44)
)

= ε2 + (3− 2ε)ε+ ε2 + ε(2− 2ε) + ε(2− 2ε) + ε2 + (3− 2ε)ε+ ε2

= 10ε− 4ε2.

This may be made as small as we please since ε > 0 was arbitrary. Hence by the
Theorem, f is integrable on R.

4. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement. Let E ⊂ R2 be a bounded set and f : E → R be a bounded function. If

the lower integral

∫
E

f(x) dv(x) > 0 then f is integrable on E.

False. For E = [0, 1] × [0, 1], we find a function with positive lower integral which
does not equal its upper integral, hence is not integrable on E. Indeed, for

f(x, y) =

{
2, if y ∈ Q;

1, otherwise.

we have

0 <

∫
E

f(x, y) dV (x, y) = 1 <

∫
E

f(x, y) dV (x, y) = 2.
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(b) Statement. If the bounded function f : [0, 1]× [0, 2]→ R is integrable on [0, 1]× [0, 2]
then f(x, y) is an integrable function of y on [0, 2] for every x ∈ [0, 1].

False. Let

f(x, y) =

{
1, if x = 1

2 and q ∈ Q;

0, otherwise.

Then f(x, y) is discontinuous on the set
{

1
2

}
× [0, 2] in R = [0, 1] × [0, 2] which has

volume zero. Hence f(x, y) is integrable on R, but the function f
(
1
2 , y
)

is not integrable
for y ∈ [0, 2].

(c) Statement. Let fn(x, y) : [0, 1]× [0, 1]→ R be integrable. If the sequence of fn → 0

pointwise on [0, 1]× [0, 1] as n→∞, then lim
n→∞

∫
[0,1]×[0,1]

fn(x, y) dV (x, y) = 0.

False. Consider the sequence of functions

fn(x, y) =

{
n2, if (x, y) ∈

(
0, 1

n

)
×
(
0, 1

n

)
;

0, otherwise.

Then for every (x, y) ∈ R = [0, 1] × [0, 1] we have fn(x, y) → 0 as n → ∞. To see
it, if (x, y) ∈ ∂R then fn(x, y) = 0 for all n. Otherwise, for n large enough so that
1
n < min{x, y} we have fn(x, y) = 0, hence fn(x, y)→ 0 as n→∞ also. On the other
hand, the bounded function fn is integrable on R since its discontinuities are a set of
volume zero but its integral is for all n,∫

R

fn(x, y) dV (x, y) = 1.

5. Let F (x, y, z, w) = (x+ yz + w, xy + zw). Prove that the level set

S = {(x, y, z, w) : F (x, y, z, w) = (5, 4)}

is a locally parameterized surface near the point (1, 2, 1, 2) ∈ S. What is the tangent space
to S at (1, 2, 1, 2)?

We apply the Implicit Function Theorem to the smooth function F . Compute the differential

dF (x, y, z, w) =

1 z y 1

y x w z

 .

At the point P = (1, 2, 1, 2),

dF (P ) =

1 1 2 1

2 1 2 1

 .

To solve for (x, y) in terms of (z, w) we need that the dFx,y(P ) part of the differential to
be invertible. Indeed

∂(f1, f2)

∂(x, y)
=

1 1

2 1


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has determinant −1 so is invertible. By the Implicit Function Theorem, there is an open
set G ⊂ R4 such that (1, 2, 1, 2) ∈ G and an open set H ⊂ R2 such that (1, 2) ∈ H and C1
functions u, v : H → R such that u(1, 2) = 1, v(1, 2) = 2 and

F (x, y, z, w) = (5, 4) for (x, y, z, w) ∈ G ⇐⇒ x = u(z, w) and y = v(z, w)
for some (z, w) ∈ H.

The level set S is represented as a parameterized surface by the parameterization Φ : H →
R4 given by Φ(z, w) = (u(z, w), v(z, w), z, w). We have

S ∩ G = {Φ(z, w) : (z, w) ∈ H}.

The tangent plane is given by Φ(1, 2) + dΦ(1, 2)(R2). But, by the chain rule, differentiating
the equation for S, namely dF (Φ(z, w)) = (5, 4), we get dF (P ) ◦ dΦ(1, 2)(R2) = 0. Thus
the tangent plane is the affine space that passes through P = (1, 2, 1, 2) and is parallel to
the nullspace of dF (P ). Solving using row operations on the matrix we find1 1 2 1

2 1 2 1

→
1 1 2 1

0 −1 −2 −1


so that

y = −2z − w
x = −y − 2z − w = 0.

Thus the tangent space to S at P is



1

2− 2z − w

1 + z

2 + w


: z, w ∈ R


.
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