
Math 3220 § 2.
Treibergs

Second Midterm Exam Name: Solutions
October 23, 2019

1. Let f(x, y) =


y5

x4 + y4
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

Is f is continuous at (0, 0)? Do the partial derivatives
∂f

∂x
and

∂f

∂y
exist at (0, 0)? Is f

differentiable at (0, 0)? Why?

The function is continuous at (0, 0). Indeed

|f(h, k)− f(0, 0)| =
∣∣∣∣ k5

h4 + k4
− 0

∣∣∣∣ =
|k|k4

h4 + k4
≤ |k| ≤

√
h2 + k2 = ‖(h, k)− (0, 0)‖ → 0

as (h, k)→ (0, 0).

The partial derivatives exist at (0, 0). We have f(x, 0) = 0 and f(0, y) =
y5

04 + y4
= y.

It follows that

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim
h→0

0− 0

h
= 0

∂f

∂y
(0, 0) = lim

k→0

f(0, k)− f(0, 0)

k
= lim
h→0

k − 0

k
= 1.

f(x, y) is not differentiable at (0, 0). If the differential exsted, it would be the linear
transformation involving the Jacobian matrix

df(0, 0)

(
h

k

)
=

(
∂f

∂x
(0, 0)

∂f

∂y
(0, 0)

)(
h

k

)
=

(
0 1

)(
h

k

)
= k.

But the difference quotient does not limit to zero. The difference quotient is

q(h, k) =
f(h+ 0, k + 0)− f(0, 0)− df(0, 0)(h, k)

‖(h, k)‖
=

k5

h4 + k4
− 0− k

√
h2 + k2

=
k5 − k(h4 + k4)

(h4 + k4)
√
h2 + k2

= − kh4

(h4 + k4)
√
h2 + k2

.

Along the path (h, k) = (t, 0) we have q(t, 0) = 0 → 0 as t → 0. But along another path
(h, k) = (t, t),

q(t, t) = − t5

(t4 + t4)
√
t2 + t2

= − 1

2
√

2
→ − 1

2
√

2

as t → 0. Thus the limits along two paths are unequal so the limit lim(h,k)→(0,0) q(h, k)
does not even exist.
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2. Let f(x, y) : R2 → R be a function whose first partial derivatives exist everywhere. For
(a, b) ∈ R2, let

g(x, y) =


f(x, y)− f(a, y)− f(x, b) + f(a, b)

(x− a)(y − b)
, if (x, y) 6= (a, b);

c, if (x, y) = (a, b).

Assume that g(x, y) is continuous at (a, b). Deduce that both
∂2f

∂x ∂y
and

∂2f

∂y ∂x
exist and

are equal at (a, b).

Strictly speaking, the function g(x, y) is not defined if x = a or y = b. However, using the
assumption that partial derivatives exist, the limits exist at x = a and y 6= b

lim
x→a

g(x, y) =
1

y − b

(
∂f

∂x
(a, y)− ∂f

∂x
(a, b)

)
and for y = b and x 6= a

lim
y→b

g(x, y) =
1

x− a

(
∂f

∂y
(x, b)− ∂f

∂y
(a, b)

)
.

Thus we may extend the function to (x, y) 6= (a, b) by

g̃(x, y) =



f(x, y)− f(a, y)− f(x, b) + f(a, b)

(x− a)(y − b)
, if x 6= a and y 6= b;

1

y − b

(
∂f

∂x
(a, y)− ∂f

∂x
(a, b)

)
, if x = a and y 6= b;

1

x− a

(
∂f

∂y
(x, b)− ∂f

∂y
(a, b)

)
, if y = b and x 6= a;

c, if (x, y) = (a, b).

This function also satisfies

c = g̃(a, b) = lim
(x,y)→(a,b)

g̃(h, k).

The two second derivatives are the limits as (h, k) → (0, 0) for different paths, hence are
equal to the limit. By continuity of g̃, the limit exists and equals the value at (a, b). By
going x→ a first and then y → b we have

c = g̃(a, b) = lim
(x,y)→(a,b)

g̃(h, k)

= lim
y→b

1

y − b

(
lim
x→a

f(x, y)− f(a, y)− f(x, b) + f(a, b)

x− a

)
= lim
y→b

1

y − b

(
∂f

∂x
(a, y)− ∂f

∂x
(a, b)

)
=

∂2f

∂y ∂x
(0, 0)

where in the inner limit we used the assumption that
∂f

∂x
(x, y) exists for all (x, y). Thus

the partial derivative
∂2f

∂y ∂x
(0, 0) exists at (a, b) and equals c. Instead, by going y → b first
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and then x→ a we have

c = g(a, b) = lim
(x,y)→(a,b)

g(h, k)

= lim
x→a

1

x− a

(
lim
y→b

f(x, y)− f(x, b)− f(a, y) + f(a, b)

y − b

)
= lim
x→a

1

x− a

(
∂f

∂y
(x, b)− ∂f

∂y
(a, b)

)
=

∂2f

∂x ∂y
(0, 0)

where in the inner limit we used the other assumption that
∂f

∂y
(x, y) exists for all (x, y).

Thus the partial derivative
∂2f

∂x ∂y
(0, 0) exists at (a, b) and also equals c.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: Let D ⊂ R and γ : D → R2 be continuous. If γ(D) is connected then D
is connected.

False. The set D = (0, 1) ∪ (2, 3) is disconnected but for γ(t) = (0, 0), constant, the
singleton set γ(D) = {(0, 0)} is connected.

(b) Statement: Let E ⊂ Rp and f : E → Rq be continuous. If A is relatively closed in
f(E) then f−1(A) is relatively closed in E.

True. A being relatively closed in f(E) means that f(E)\A is relatively open in f(E).
Hence there is an open set U ⊂ Rq so that f(E)\A = U ∩ f(E). It follows that

E\f−1(A) = f−1(f(E)\A) = f−1(U ∩ f(E))

= f−1(U) ∩ f−1(f(E)) = f−1(U) ∩ E = f−1(U),

which is reltively open in E because f is continuous. It follows that f−1(A) is relatively
closed in E.

(c) Statement: f(x, y) ∼
∞∑
k=0

(
x2 + y2

)k
converges uniformly in the unit ball B1(0, 0).

False. The partial sums fn(x, y) =

n∑
k=0

(
x2 + y2

)k
are bounded for (x, y) ∈ B1(0, 0),

|fn(x, y)| ≤
n∑
k=0

∣∣x2 + y2
∣∣k ≤ n∑

k=0

1 = n+ 1

since x2 + y2 < 1. If the convergence were uniform, {fn} would limit to a bounded
function, contradicting the fact that the sum is unbounded on B1(0, 0)

f(x, y) =

∞∑
k=0

(
x2 + y2

)k
=

1

1− x2 − y2
.

We have used the formula for the sum of a geometric series

∞∑
k=0

ark =
a

1− r
with

r = x2 + y2.

3



Other proofs are possible based on other properties of uniformly convergent series.
For example, if fn → f is uniform as n→∞ then fn(xn, yn)− f(xn, yn)→ 0 for any

sequence {(xn, yn)} in B1(0, 0). However, choosing (xn, yn) =
(√

1− 1
n2 , 0

)
we have

fn(xn, yn) − f(xn, yn) ≤ n + 1 − n2 → −∞ as n → ∞, so the convergence couldn’t
have been uniform.

4. Let K ⊂ Rp. Define: the set K is compact. Suppose that f : Rp → Rq is a C1 function.
Show that for every r > 0 there is an M ∈ R such that for all x,y ∈ Br(0), the ball of
radius r,

‖f(x)− f(y)‖ ≤M‖x− y‖.

A set K ⊂ Rp is compact if every open cover has an finite subcover, i.e., if K ⊂ ∪α∈AGα
for some open sets Gα, then there are finitely many indices α1, . . . , αn so that
K ⊂ Gα1

∪ · · · ∪Gαn
.

Writing the function in components, f(x) = (f1(x1, . . . , xp), . . . , fq(x1, . . . , xp)), its differ-
ential is the linear transformation given by the q × p Jacobian matrix

df(x) =


∂f1
∂x1

(x) · · · ∂f1
∂xp

(x)

...
...

∂fq
∂x1

(x) · · · ∂fq
∂xp

(x)

 .

Because f ∈ C1(Rp,Rq), the partial derivatives are all continuous. Hence the function

M(x) =

√√√√ p∑
i=1

q∑
j=1

(
∂fj
∂xi

(x)

)2

is continuous. It is also a bound on the operator norm of the differential: for all x,h ∈ Rp

‖df(x)(h)‖ ≤M(x)‖h‖. (1)

Choose r > 0. The closed ball Br(0) is compact so that the continuous function has a
bound on Br(0) given by

Mr = sup
x∈Br(0)

M(x). (2)

Now choose any x,y ∈ Br(0). Since Br(0) is convex, the line segment [x,y] ⊂ Br(0). It
follows from the Mean Value Theorem that there is a point z ∈ [x,y] ⊂ Br(0) so that

f(y)− f(x) = df(z)(y − x).

By taking norms and using (1) and (2),

‖f(y)− f(x)‖ = ‖df(z)(y − x)‖ ≤M(z)‖y − x‖ ≤Mr‖y − x‖.

5. Let a,h ∈ R2, f : R3 → R2 and g : R2 → R3 be given by

a =

1

2

 , h =

k
`

 , f


u

v

w

 =

2u− v

vw

 , g

x
y

 =


x+ y

xy

−1

 .
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Compute d(f ◦ g)(a)(h) in two ways, directly and using the chin rule.

The first way is to compute f ◦ g and take its differetial.

f ◦ g

x
y

 = f

g
x
y


 = f


x+ y

xy

−1

 =

2(x+ y)− xy

−xy

 ,

d(f ◦ g)

x
y

 =

2− y 2− x

−y −x

 ,

d(f ◦ g)(a)(h) = d(f ◦ g)

1

2


k
`

 =

 0 1

−2 −1


k
`

 .

The second way is to use the chain rule: take differentials first and multiply.

b = g(a) = g

1

2

 =


3

2

−1

 ,

dg

x
y

 =


1 1

y x

0 0

 so dg(a) = dg

1

2

 =


1 1

2 1

0 0



df


u

v

w

 =

2 −1 0

0 w v

 so df(b) = df


3

2

−1

 =

2 −1 0

0 −1 2



By the chain rule,

d(f ◦ g)(a)(h) = df
(
g(a)

)(
df(a)(h)

)
= df(b) dg(a)(h)

=

2 −1 0

0 −1 2




1 1

2 1

0 0


k
`

 =

 0 1

−2 −1


k
`

 .
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