Math 3220 § 2. First Midterm Exam Name:= Golutions
Treibergs ar September 11, 2019

1. Let E,F,G C R%. Define: G is an open set. Define: F is a closed set. Using just your
definitions in (a), show that if both E and F are closed then their union EUF is closed.

A set G C R? is open if for every o € G there is an € > 0 so that the ball B.(z) C G. A set
F C R%is closed if its complement F'¢ = R\ F is open.

To show E'U F' is closed we have to show that its complement
(FUF)=E°NF°

is open, where we have used deMorgan’s law. Let x € E°N F°. Now E and F being closed
says that there are 6 > 0 and n > 0 such that the balls Bs(x) C E° and B,(x) C F°.
Let € = min{d,n}. Then B.(x) C Bs(x) C E° and B¢(x) C B,(z) C F°. It follows that
B (x) CE°NF°=(EUF)° Thus (EUF)¢is open and so E U F is closed.

2. Let {u,} be a sequence and u be a point in R?. Define: u, — u asn — co. Assume u, — u
and v, — v as n — oo in R% and let a € R®. Prove using just the definition and vector
space properties (but not the Main Limit Theorem) that

(up —a) v, > (u—a)-v as n — 0o.

A sequence converges u, — u as n — oo in R® if for every € > 0 there is N € R such that

lun, —ul| <€ whenever n > N.

First we find a bound for ||u,, — al|. Since u, — u as n — oo, for ¢ = 1 there is N; € R so

that
lun, —ul|l <1 whenever n > Nj.
It follows that
lun, —all = lun —u+u—al| <|un, —ul|+ |lu—al <1+ ||u—al whenever n > Nj.

Then we prove the limit is as claimed. Choose € > 0. Since uw,, — u as n — oo, there is
N5 € R such that

[l — ul| < 5 whenever n > N,.

€
(L+1vl)
Since v,, — v as n — 00, there is N3 € R such that

€

lvn — ]| < 5 whenever n > Nj.

(14 [lu—al)

Let N = max{Ny, No, N3}. If n > N we have using the triangle and the Schwarz inequali-
ties,

(U —a) vy — (U —a) v+ (u, —a) -v—(u—a)- v

|
= |(up —a) - (vp —v) + (up —a—u+a)-v|
< |[(un —a) - (vn —v)[ + |(up —a —u+a)- vl
< Mlun — all [Jlvn — vl + [Jun — ul| ||v]]
€ €
<1+ u—al) + ]| <,
2(1+ [[u—al) 2(1+ (vl

proving (u, —a) v, — (u—a) - v as n — oo as claimed.



3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Let ||(u1,uz)|| = |u1 — uz|. Then the function ||(u1,us)| is a norm on R2.
FALSE. This candidate is not positive definite. Indeed, [|(1,1)]| = |1 —1| = 0, however,
(1,1) # (0,0).

(b) Let E C R%. Then the interior of the boundary is empty (OF)° = ().
FALSE. In R, consider the set of rationals in the unit interval E = Q N [0, 1]. Then
OF =[0,1] and (0F)° = (0,1).

k
(¢) f(z)~ Z COSQ(k 2) is differentiable for all x € R.
k=0

TRUE. We apply the Theorem from problem 152[3]. The summands are differentiable
functions

cos kx ksin kx

fk(-r):Tv f/::(x):_T

At =0, f,(0) = 27" which is a summable geometric series. The derivatives satisfy

k
|7 (z)] < %= M, for all z and all k.
But Y 72, M < oo is summable. It follows that f(z) converges everywhere and
that it is differentiable and its derivative is given by the convergent series of termwise

derivatives
o0

ksink
Py = -3 keinke

k=1

1 1
4. Let K C R®. Define: the set K is compact. Determine whether E = {(, 2) 'n € N}
n’'n
is compact in R2. Prove your answer directly from the definition (a) without using the
Heine Borel Theorem.

A set K C R? is compact if every cover has a finite subcover. That is, if {O4}aca is a
collection of open sets such that K C Uyc 4O, then there are finitely many indices o, . .., ay
such that K C Oy, U---UQO,,.

The given set E is NoT COMPACT. We produce a cover that does not have a finite subcover.
We find a collection of pairwise disjoint open sets each of which contains exactly one of the
points of E. Then a finite subcover only covers finitely many of the points but not all of E.

For example, if we choose points cg, ¢1, ¢2, ... such that
1 1 1
Co> - >C > - > >Che]1 > — >Cp >t
1 2 n

then we may take open sets O, = {(z,y) € R? : ¢, < x < ¢,,_1 and y € R.}. The point
1 1
( > is in O,, but is not in O; if i # n. One possible choice is

n’ n2
1
n —+

Cp =

[N



5. (a)

o]
Suppose that |ag| < |bk| for k large. Prove that if Zbk z® converges in an open

k=0
o0

interval I then Z ap ¥ also converges on I.

k=0
oo

The power series E by z* centered at zero converges in an interval (—R, R) where
k=0

1 1
=i bi|E.
im sup |by|

k— o0
oo
The power series Z ay, x" centered at zero converges in an interval (—R’, R') where
k=0
Ly lag|* < 1i |bye|
— = limsup |ag|* < limsup |bg|* = =,
R k—o0 k—o0 R
o)
where we have used |ag| < |bg| for k large. It follows that R’ > R so that Zak z®
k=0

converges at least in the same interval (—R’, R') D (—R, R).

Suppose that g is infinitely differentiable function on (a—r,a+r) and there is a constant
M such that the kth derivative
ME!
<

19 (2)] < . forallk=0,1,2,3,... and all z € (a —r,a + 7).

Show that the Taylor Series for g(x) at a converges to g on (a —r,a+1).
Let

— f¥(a)
gule) =31 @ — )t
k=0
be the nth Taylor polynomial. The error is given by

_ ()

(x —a)

where ¢ is a point between a and € (a — r,a + 7). Estimating the error using the
given inequality,

(1) (¢
f(n ¥ 1()!) (= a)™!
M(n+1)!
— rtli(n+1)!
M|z — a|"*!

:71"”“ —0

l9(2) = gn(2)] <

|.7J _ a|n+1

as n — oo since |x —a| < r. It follows that for € (a—r,a+r), the Taylor polymomial
converges to the function: g,(z) — g(x) as n — oo.



