
Math 3220 § 2.
Treibergs −−σιι

First Midterm Exam Name:= Solutions
September 11, 2019

1. Let E,F,G ⊂ Rd. Define: G is an open set. Define: F is a closed set. Using just your
definitions in (a), show that if both E and F are closed then their union E ∪ F is closed.

A set G ⊂ Rd is open if for every x ∈ G there is an ε > 0 so that the ball Bε(x) ⊂ G. A set
F ⊂ Rd is closed if its complement F c = Rd\F is open.

To show E ∪ F is closed we have to show that its complement

(E ∪ F )c = Ec ∩ F c

is open, where we have used deMorgan’s law. Let x ∈ Ec ∩ F c. Now E and F being closed
says that there are δ > 0 and η > 0 such that the balls Bδ(x) ⊂ Ec and Bη(x) ⊂ F c.
Let ε = min{δ, η}. Then Bε(x) ⊂ Bδ(x) ⊂ Ec and Bε(x) ⊂ Bη(x) ⊂ F c. It follows that
Bε(x) ⊂ Ec ∩ F c = (E ∪ F )c. Thus (E ∪ F )c is open and so E ∪ F is closed.

2. Let {un} be a sequence and u be a point in Rd. Define: un → u as n→∞. Assume un → u
and vn → v as n → ∞ in Rd and let a ∈ Rd. Prove using just the definition and vector
space properties (but not the Main Limit Theorem) that

(un − a) · vn → (u− a) · v as n→∞.

A sequence converges un → u as n→∞ in Rd if for every ε > 0 there is N ∈ R such that

‖un − u‖ < ε whenever n > N .

First we find a bound for ‖un − a‖. Since un → u as n→∞, for ε = 1 there is N1 ∈ R so
that

‖un − u‖ < 1 whenever n > N1.

It follows that

‖un − a‖ = ‖un − u+ u− a‖ ≤ ‖un − u‖+ ‖u− a‖ < 1 + ‖u− a‖ whenever n > N1.

Then we prove the limit is as claimed. Choose ε > 0. Since un → u as n → ∞, there is
N2 ∈ R such that

‖un − u‖ <
ε

2(1 + ‖v‖)
whenever n > N2.

Since vn → v as n→∞, there is N3 ∈ R such that

‖vn − v‖ <
ε

2(1 + ‖u− a‖)
whenever n > N3.

Let N = max{N1, N2, N3}. If n > N we have using the triangle and the Schwarz inequali-
ties,

|(un − a) · vn − (u− a) · v| = |(un − a) · vn − (un − a) · v + (un − a) · v − (u− a) · v|
= |(un − a) · (vn − v) + (un − a− u+ a) · v|
≤ |(un − a) · (vn − v)|+ |(un − a− u+ a) · v|
≤ ‖un − a‖ ‖vn − v‖+ ‖un − u‖ ‖v‖

≤ (1 + ‖u− a‖) ε

2(1 + ‖u− a‖)
+ ‖v‖ ε

2(1 + ‖v‖)
< ε,

proving (un − a) · vn → (u− a) · v as n→∞ as claimed.
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3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Let ‖(u1, u2)‖ = |u1 − u2|. Then the function ‖(u1, u2)‖ is a norm on R2.

False. This candidate is not positive definite. Indeed, ‖(1, 1)‖ = |1−1| = 0, however,
(1, 1) 6= (0, 0).

(b) Let E ⊂ Rd. Then the interior of the boundary is empty (∂E)◦ = ∅.
False. In R, consider the set of rationals in the unit interval E = Q ∩ [0, 1]. Then
∂E = [0, 1] and (∂E)◦ = (0, 1).

(c) f(x) ∼
∞∑
k=0

cos(kx)

2k
is differentiable for all x ∈ R.

True. We apply the Theorem from problem 152[3]. The summands are differentiable
functions

fk(x) =
cos kx

2k
, f ′k(x) = −k sin kx

2k
.

At x = 0, fk(0) = 2−k which is a summable geometric series. The derivatives satisfy

|f ′k(x)| ≤ k

2k
= Mk for all x and all k.

But
∑∞
k=1Mk < ∞ is summable. It follows that f(x) converges everywhere and

that it is differentiable and its derivative is given by the convergent series of termwise
derivatives

f ′(x) = −
∞∑
k=1

k sin kx

2k
.

4. Let K ⊂ Rd. Define: the set K is compact. Determine whether E =

{(
1

n
,

1

n2

)
: n ∈ N

}
is compact in R2. Prove your answer directly from the definition (a) without using the
Heine Borel Theorem.

A set K ⊂ Rd is compact if every cover has a finite subcover. That is, if {Oα}α∈A is a
collection of open sets such thatK ⊂ ∪α∈AOα then there are finitely many indices α1, . . . , αp
such that K ⊂ Oα1

∪ · · · ∪ Oαp
.

The given set E is Not Compact. We produce a cover that does not have a finite subcover.
We find a collection of pairwise disjoint open sets each of which contains exactly one of the
points of E. Then a finite subcover only covers finitely many of the points but not all of E.
For example, if we choose points c0, c1, c2, . . . such that

c0 >
1

1
> c1 >

1

2
> · · · > cn−1 >

1

n
> cn > · · ·

then we may take open sets On = {(x, y) ∈ R2 : cn < x < cn−1 and y ∈ R.}. The point(
1

n
,

1

n2

)
is in On but is not in Oi if i 6= n. One possible choice is

cn =
1

n+ 1
2

.
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5. (a) Suppose that |ak| ≤ |bk| for k large. Prove that if

∞∑
k=0

bk x
k converges in an open

interval I then

∞∑
k=0

ak x
k also converges on I.

The power series

∞∑
k=0

bk x
k centered at zero converges in an interval (−R,R) where

1

R
= lim sup

k→∞
|bk|

1
k .

The power series

∞∑
k=0

ak x
k centered at zero converges in an interval (−R′, R′) where

1

R′
= lim sup

k→∞
|ak|

1
k ≤ lim sup

k→∞
|bk|

1
k =

1

R
,

where we have used |ak| ≤ |bk| for k large. It follows that R′ ≥ R so that

∞∑
k=0

ak x
k

converges at least in the same interval (−R′, R′) ⊃ (−R,R).

(b) Suppose that g is infinitely differentiable function on (a−r, a+r) and there is a constant
M such that the kth derivative

|g(k)(z)| ≤ Mk!

rk
for all k = 0, 1, 2, 3, . . . and all z ∈ (a− r, a+ r).

Show that the Taylor Series for g(x) at a converges to g on (a− r, a+ r).

Let

gn(x) =

n∑
k=0

f (k)(a)

k!
(x− a)k

be the nth Taylor polynomial. The error is given by

g(x)− gn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

where c is a point between a and x ∈ (a − r, a + r). Estimating the error using the
given inequality,

|g(x)− gn(x)| ≤
∣∣∣∣f (n+1)(c)

(n+ 1)!
(x− a)n+1

∣∣∣∣
≤ M(n+ 1)!

rn+1(n+ 1)!
|x− a|n+1

=
M |x− a|n+1

rn+1
→ 0

as n→∞ since |x−a| < r. It follows that for x ∈ (a−r, a+r), the Taylor polymomial
converges to the function: gn(x)→ g(x) as n→∞.
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