Math 3220 § 2.	First Midterm Exam	Name:=	Solutions
Treibergs at		September 11	1, 2019

1. Let $E, F, G \subset \mathbf{R}^d$. Define: G is an open set. Define: F is a closed set. Using just your definitions in (a), show that if both E and F are closed then their union $E \cup F$ is closed.

A set $G \subset \mathbf{R}^d$ is open if for every $x \in G$ there is an $\epsilon > 0$ so that the ball $B_{\epsilon}(x) \subset G$. A set $F \subset \mathbf{R}^d$ is closed if its complement $F^c = \mathbf{R}^d \setminus F$ is open.

To show $E \cup F$ is closed we have to show that its complement

$$(E \cup F)^c = E^c \cap F^c$$

is open, where we have used deMorgan's law. Let $x \in E^c \cap F^c$. Now E and F being closed says that there are $\delta > 0$ and $\eta > 0$ such that the balls $B_{\delta}(x) \subset E^c$ and $B_{\eta}(x) \subset F^c$. Let $\epsilon = \min\{\delta, \eta\}$. Then $B_{\epsilon}(x) \subset B_{\delta}(x) \subset E^c$ and $B_{\epsilon}(x) \subset B_{\eta}(x) \subset F^c$. It follows that $B_{\epsilon}(x) \subset E^c \cap F^c = (E \cup F)^c$. Thus $(E \cup F)^c$ is open and so $E \cup F$ is closed.

2. Let $\{u_n\}$ be a sequence and u be a point in \mathbf{R}^d . Define: $u_n \to u$ as $n \to \infty$. Assume $u_n \to u$ and $v_n \to v$ as $n \to \infty$ in \mathbf{R}^d and let $a \in \mathbf{R}^d$. Prove using just the definition and vector space properties (but not the Main Limit Theorem) that

$$(u_n - a) \cdot v_n \to (u - a) \cdot v \quad as \ n \to \infty.$$

A sequence converges $u_n \to u$ as $n \to \infty$ in \mathbf{R}^d if for every $\epsilon > 0$ there is $N \in \mathbf{R}$ such that

$$||u_n - u|| < \epsilon$$
 whenever $n > N$.

First we find a bound for $||u_n - a||$. Since $u_n \to u$ as $n \to \infty$, for $\epsilon = 1$ there is $N_1 \in \mathbf{R}$ so that

$$||u_n - u|| < 1 \qquad \text{whenever } n > N_1.$$

It follows that

$$||u_n - a|| = ||u_n - u + u - a|| \le ||u_n - u|| + ||u - a|| < 1 + ||u - a||$$
 whenever $n > N_1$.

Then we prove the limit is as claimed. Choose $\epsilon > 0$. Since $u_n \to u$ as $n \to \infty$, there is $N_2 \in \mathbf{R}$ such that

$$||u_n - u|| < \frac{\epsilon}{2(1 + ||v||)}$$
 whenever $n > N_2$.

Since $v_n \to v$ as $n \to \infty$, there is $N_3 \in \mathbf{R}$ such that

$$||v_n - v|| < \frac{\epsilon}{2(1 + ||u - a||)} \qquad \text{whenever } n > N_3.$$

Let $N = \max\{N_1, N_2, N_3\}$. If n > N we have using the triangle and the Schwarz inequalities,

$$\begin{aligned} |(u_n - a) \cdot v_n - (u - a) \cdot v| &= |(u_n - a) \cdot v_n - (u_n - a) \cdot v + (u_n - a) \cdot v - (u - a) \cdot v| \\ &= |(u_n - a) \cdot (v_n - v) + (u_n - a - u + a) \cdot v| \\ &\leq |(u_n - a) \cdot (v_n - v)| + |(u_n - a - u + a) \cdot v| \\ &\leq ||u_n - a|| \, ||v_n - v|| + ||u_n - u|| \, ||v|| \\ &\leq (1 + ||u - a||) \frac{\epsilon}{2(1 + ||u - a||)} + ||v|| \frac{\epsilon}{2(1 + ||v||)} < \epsilon, \end{aligned}$$

proving $(u_n - a) \cdot v_n \to (u - a) \cdot v$ as $n \to \infty$ as claimed.

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) Let ||(u₁, u₂)|| = |u₁ u₂|. Then the function ||(u₁, u₂)|| is a norm on R².
 FALSE. This candidate is not positive definite. Indeed, ||(1, 1)|| = |1 1| = 0, however, (1, 1) ≠ (0, 0).
 - (b) Let $E \subset \mathbf{R}^d$. Then the interior of the boundary is empty $(\partial E)^\circ = \emptyset$. FALSE. In **R**, consider the set of rationals in the unit interval $E = \mathbb{Q} \cap [0, 1]$. Then $\partial E = [0, 1]$ and $(\partial E)^\circ = (0, 1)$.
 - (c) $f(x) \sim \sum_{k=0}^{\infty} \frac{\cos(kx)}{2^k}$ is differentiable for all $x \in \mathbf{R}$.

TRUE. We apply the Theorem from problem 152[3]. The summands are differentiable functions

$$f_k(x) = \frac{\cos kx}{2^k}, \qquad f'_k(x) = -\frac{k\sin kx}{2^k}$$

At x = 0, $f_k(0) = 2^{-k}$ which is a summable geometric series. The derivatives satisfy

$$f'_k(x)| \le \frac{k}{2^k} = M_k$$
 for all x and all k .

But $\sum_{k=1}^{\infty} M_k < \infty$ is summable. It follows that f(x) converges everywhere and that it is differentiable and its derivative is given by the convergent series of termwise derivatives

$$f'(x) = -\sum_{k=1}^{\infty} \frac{k \sin kx}{2^k}$$

4. Let $K \subset \mathbf{R}^d$. Define: the set K is compact. Determine whether $E = \left\{ \left(\frac{1}{n}, \frac{1}{n^2}\right) : n \in \mathbb{N} \right\}$ is compact in \mathbf{R}^2 . Prove your answer directly from the definition (a) without using the Heine Borel Theorem.

A set $K \subset \mathbf{R}^d$ is *compact* if every cover has a finite subcover. That is, if $\{\mathcal{O}_\alpha\}_{\alpha \in A}$ is a collection of open sets such that $K \subset \bigcup_{\alpha \in A} \mathcal{O}_\alpha$ then there are finitely many indices $\alpha_1, \ldots, \alpha_p$ such that $K \subset \mathcal{O}_{\alpha_1} \cup \cdots \cup \mathcal{O}_{\alpha_p}$.

The given set E is NOT COMPACT. We produce a cover that does not have a finite subcover. We find a collection of pairwise disjoint open sets each of which contains exactly one of the points of E. Then a finite subcover only covers finitely many of the points but not all of E. For example, if we choose points c_0, c_1, c_2, \ldots such that

$$c_0 > \frac{1}{1} > c_1 > \frac{1}{2} > \dots > c_{n-1} > \frac{1}{n} > c_n > \dots$$

then we may take open sets $\mathcal{O}_n = \{(x, y) \in \mathbf{R}^2 : c_n < x < c_{n-1} \text{ and } y \in \mathbf{R}.\}$. The point $\left(\frac{1}{n}, \frac{1}{n^2}\right)$ is in \mathcal{O}_n but is not in \mathcal{O}_i if $i \neq n$. One possible choice is

$$c_n = \frac{1}{n + \frac{1}{2}}.$$

5. (a) Suppose that $|a_k| \leq |b_k|$ for k large. Prove that if $\sum_{k=0}^{\infty} b_k x^k$ converges in an open

interval I then $\sum_{k=0}^{\infty} a_k x^k$ also converges on I. The power series $\sum_{k=0}^{\infty} b_k x^k$ centered at zero converges in an interval (-R, R) where

$$\frac{1}{R} = \limsup_{k \to \infty} |b_k|^{\frac{1}{k}}.$$

The power series $\sum_{k=0}^{\infty} a_k x^k$ centered at zero converges in an interval (-R', R') where

$$\frac{1}{R'} = \limsup_{k \to \infty} |a_k|^{\frac{1}{k}} \le \limsup_{k \to \infty} |b_k|^{\frac{1}{k}} = \frac{1}{R},$$

where we have used $|a_k| \leq |b_k|$ for k large. It follows that $R' \geq R$ so that $\sum_{k=0}^{\infty} a_k x^k$ converges at least in the same interval $(-R', R') \supset (-R, R)$.

(b) Suppose that g is infinitely differentiable function on (a-r, a+r) and there is a constant M such that the kth derivative

$$|g^{(k)}(z)| \le \frac{Mk!}{r^k}$$
 for all $k = 0, 1, 2, 3, \dots$ and all $z \in (a - r, a + r)$.

Show that the Taylor Series for g(x) at a converges to g on (a - r, a + r). Let

$$g_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

be the nth Taylor polynomial. The error is given by

$$g(x) - g_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

where c is a point between a and $x \in (a - r, a + r)$. Estimating the error using the given inequality,

$$|g(x) - g_n(x)| \le \left| \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1} \right|$$
$$\le \frac{M(n+1)!}{r^{n+1}(n+1)!} |x-a|^{n+1}$$
$$= \frac{M|x-a|^{n+1}}{r^{n+1}} \to 0$$

as $n \to \infty$ since |x-a| < r. It follows that for $x \in (a-r, a+r)$, the Taylor polynomial converges to the function: $g_n(x) \to g(x)$ as $n \to \infty$.