Solutions of Homework N Problems Math 3220
§2, Spring 2018

A. Treibergs

April 24, 2018

Here are the solutions to some homework problems from Joe Taylor’s text, Foundations of Analy-
sis. Students often had the right idea to solve the problem, but did not write complete and careful
solutions.

1. Let B € R? be a compact Jordan region and f,g : B — R be continuous functions such
that g(x) < f(z) for all x € B. Define the region

A={(z,t) eR¥™: z € Bandg(z) <t < f(zx)}

Show that A is a Jordan region. [Taylor, p. 288, Problem 12.]

Let R be a big aligned rectangle such that B C R. Since f, g are continuous on a compact
set B, they are bounded: there is M < oo such that —M < g(z) < f(x) < M for all x € B.
Thus A is a boundend set since it is a subset of the rectangle A x [—-M, M].

We use the theorem that A is Jordan if and only if 9A has volume zero. A set £ C R? has
volume zero if the upper volume is zero. This is equivalent to two statements. The first is
that for every e > 0, there is a partition mathcal P of R such that U(xg, P) — L(xg,P) < €.
The other is that for every € > 0 there are finitely many aligned boxes R; such that

Ec|Jr and ) V(R)<e

To handle 0A we notice that

OAC OB X [-M,MJUSUT

where
S = {(x,9(zx)) € R .z € B}, T = {(z, f(z)) e R¥ . 2 € B}.

Choose € > 0. Since B is Jordan, 9B has volume zero. Since f,g are continuous on a
compact set B, they are uniformly continuous, so there is § > 0 such that

(@)= fy)] +|g(z) —gly)| < e whenever x,y € B and |z — y| < 4.

Now choose a partition of R such that the mesh size (diameter of the maximal subrectangle)
is less than ¢ and
U(xos,P) — L(xom, P) <.

Now let us construct a cover of 9A by rectangles whose total colume is negligible. We ignore
rectangles of P such that R; N B = (.. For rectangles such that R; N dB # (), we consider



R; x [—=M, M| which will cover B x [—M, M]. For interior rectangles R; C B°, we define

m; = inf g, M; =supg
R; R;
ni = inf f, N; =sup f

7

and consider R; x [m;, M;] which will cover S, and R; x [n;, N;] which will cover T. Now
we have

OBx[-MMuSuTC | ) Rix[-M,MJU | Rix[mi,Mu |J RixniNi.
R;NOB#0D R;CB° R;CB°

Using the fact that f, g are uniformly continuous and that the diameter of R; is less than
0, since f and g take their maxima and minima in R; C B° we have M; — m; < € and
N; —n; < e. It follows that the total volume of the covering boxes is less than

S V(Rix [-M, M)+ > V(R x [mi, Mi])+ Y V(R x [n, Ni])

R;NOB#0D R;CB° R;CB°
=2M > V(R)+ D> V(R)M;i—mi)+ Y V(R)(N; —ny)
leaB;ém R;CB° R;CB°
<2M+e Y V(R)+e Y V(R)
R;CB° R;CB°

<2eM + €V(R) + €V (R) = (2M + 2V (R))e.
which is arbitrarily small for small €. Thus
V(OB x [-M.M|USUT)=0.
which implies V(0A) = 0 and A is Jordan.

. Suppose that A, B C R? are Jordan regions such that V(AN B) =0. Let f : AUB — R be
a bounded function. Show that f is integrable on A and g is integrable on B if and only if
f is integrable on AU B. If this is true, then

/Ade+/deV: L

[Taylor, p. 293, Problem 5.]

Let R be a big rectangle such that AU B C R. Recall that if £ C R then fr = xgf, the
function that is f on E and zero off E. Let E C R be a Jordan region. We use the theorem
that necessary and sufficient for f being integrable on FE is that for every e > 0 there is a
partition P such that

U(fe,P) = L(fe,P) <e.

Let us assume that f is integrable on A and f is integrable on B to show f is integrable
on AU B. Hence f is bounded: there is M < oo such that |f| < M. Moreover, we have
V(AN B) =0. Thus there are partitions Py, P2 and P such that

U(fa,P1) — L(fa,P1) <e
U(fB,P2) — L(fp,P2) < e
U(xans,Ps) — L(xanp,P3) <€



Let P be the common refinement of P, P, and P and {R;} = P; and {R} = P their
rectangles. Let
m,, = inf f, M = sup f.
R; R!

We compute

U(faus,P) = L(faus: P) = Y (M{(faus) — mi(faup))V (R})

R;

= > (M{(faus) —mi(faus))V(R})
R/NB=0

+ Z (M (faup) —mi(faup))V (R))
R/NANB#)

+ Y (M{(faus) —mi(faup))V (R)
R/NA=0

< > (M(fa) —mi(fa))V(R))
R/NB=0

+2M > V(R)

R;NANB#(

+ D (M(f) —mi(f)V (R

RINA=0

< D (M{(fa) = mi(fa))V (R])
R’

+2M Y V(R
RINANB#0

+ ) (M](f5) — mi(fB))V(R})
~

<U(fa,P)—L(fa,P)
+2M(U(xanB;P) — L(xanB, P)
+U(fB,P) — L(fB,P)

< U(fa,P1) — L(fa,P1)
+2M(U(xanB,P2) — L(xang, P2)
+U(fB,Ps) — L(fB,Ps)

<e+2Me+e=(2+2M)e

where, for example, we have used

M (faus) — mi(faus) = M(fa) —mi(fa) (1)
for rectangles R; N B = () and the refinement inequality

Since € was arbitrary, f is integrable on AU B.

Let us assume that f is integrable on AU B to show f is integrable on A and f is integrable
on B. We do integrable on A. Integrable on B is similar. Thus there are partitions Py, Po
such that

U(fAUval) - L(fAUBapl) <e€
U(xang, P2) — L(xanp,P2) < €



Let P be the common refinement of P; and Py. We estimate

U(fa,P) = L(fa,P) =Y _(M](fa) — mi(fa))V(R})

R

i

= Z (M[(fa) —mi(fa))V(R})

R;NB=0

+ ) (M{(fa) = mi(fa)V(R))

RINANB#(
< 3 (MI(favs) — mi(favs)V (R
R,NB=0
+2M Y V(R
RINANB#D

< Y (M(faus) = mi(faus))V (RY)
R’

+2M ) V(R
R/NANB#D
=U(faus,P) — L(faus,P)
+U(xans,P) — L(xans, P)
< U(faus,P1) — L(faus, P1)
+U(xanB; P2) — L(xans, P2)
<e+2Me= (1+2M)e.

where we have used (1) for R, N B = () and (2). Since € was arbitrary, f is integrable on A.

Finally, if either f is integrable on AU B or f is integrable on both A and B then it follows
that f is integrable on all sets A, B, AU B and A N B so that the functions add

fauB = fa+ fB — fanB

/AuBf:/1~2fAUB:/RfA+/RfB_/RfAmB:Af+/19_0’

proving the claimed equation.

SO

. Let L : R* = R? be a singular linear map and E C R® be a Jordan region. Then the
volume L(E) has volume zero. [Taylor, p. 314, Problem 2.]

The map is singular if the matrix L7 has a nontrivial null vector w € R?. In other words
wT'L =0 or we L(z) =0 for all z € R% Tt follows that L(E) is contained in the subspace
w. One of the components of w is nonzero (lest w = 0), so we finish the argument in case
that wg # 0. If another component is nonzero we argue similarly. Since E is Jordan, it is
bounded, and L is Lipschitz so L(E) is bounded. Let R C R? be a big rectangle of the
form R = S x [-M, M] where S is a rectangle of R?~! that contains L(E). We shall show
that the set 7 = RN w" has volume zero, and so its subset L(FE) has volume zero too. A
point x = (s,t) is in wt if w e x = 0. Solving for ¢, we find
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|
®
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I
I

T:{(s,t):seS,t:f(s) Zl wdlsl}
d



To show V(T) = 0 we use the theorem that V(T') = 0 if and only if every e > 0 there are
finitely many boxes R; such that

Tcl|Jr and ) V(R)<e

Choose € > 0. Put

2 w?
A= |V :\/“24_...4_%1,
Wq wq
the slope of T'. Choose a partition P = {S;} of S with mesh (maximal box diameter) less
€
than ————. Let
MyEaTL
m; = igf f, m; =sup f
Then T is covered by the rectangles S; x [m;, M;]. But M; —m; < ﬁ since points of S;
are less than m apart. Hence

T C USZ X [mi,Mi] and ZV(SZ X [mi,Mi]) < ﬁ ZV<SZ) = €.

3

Since e was arbitrary, T has volume zero and so does its subset L(FE).



