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Here are the solutions to some homework problems from Joe Taylor’s text, Foundations of Analy-
sis. Students often had the right idea to solve the problem, but did not write complete and careful
solutions.

1. Let B ⊂ Rd be a compact Jordan region and f, g : B → R be continuous functions such
that g(x) ≤ f(x) for all x ∈ B. Define the region

A = {(x, t) ∈ Rd+1 : x ∈ B and g(x) ≤ t ≤ f(x)}.

Show that A is a Jordan region. [Taylor, p. 288, Problem 12.]

Let R be a big aligned rectangle such that B ⊂ R. Since f, g are continuous on a compact
set B, they are bounded: there is M <∞ such that −M < g(x) ≤ f(x) ≤M for all x ∈ B.
Thus A is a boundend set since it is a subset of the rectangle A× [−M,M ].

We use the theorem that A is Jordan if and only if ∂A has volume zero. A set E ⊂ Rd has
volume zero if the upper volume is zero. This is equivalent to two statements. The first is
that for every ε > 0, there is a partition mathcalP of R such that U(χE ,P)−L(χE ,P) < ε.
The other is that for every ε > 0 there are finitely many aligned boxes Ri such that

E ⊂
⋃
i

Ri and
∑
i

V (Ri) < ε.

To handle ∂A we notice that

∂A ⊂ ∂B × [−M,M ] ∪ S ∪ T

where
S = {(x, g(x)) ∈ Rd+1 : x ∈ B}, T = {(x, f(x)) ∈ Rd+1 : x ∈ B}.

Choose ε > 0. Since B is Jordan, ∂B has volume zero. Since f, g are continuous on a
compact set B, they are uniformly continuous, so there is δ > 0 such that

|f(x)− f(y)|+ |g(x)− g(y)| < ε whenever x, y ∈ B and |x− y| < δ.

Now choose a partition of R such that the mesh size (diameter of the maximal subrectangle)
is less than δ and

U(χ∂B ,P)− L(χ∂B ,P) < ε.

Now let us construct a cover of ∂A by rectangles whose total colume is negligible. We ignore
rectangles of P such that Ri ∩ B = ∅.. For rectangles such that Ri ∩ ∂B 6= ∅, we consider
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Ri × [−M,M ] which will cover ∂B × [−M,M ]. For interior rectangles Ri ⊂ B◦, we define

mi = inf
Ri

g, Mi = sup
Ri

g

ni = inf
Ri

f, Ni = sup
Ri

f

and consider Ri × [mi,Mi] which will cover S, and Ri × [ni, Ni] which will cover T . Now
we have

∂B× [−M.M ]∪S ∪T ⊂
⋃

Ri∩∂B 6=∅

Ri× [−M,M ]∪
⋃

Ri⊂B◦
Ri× [mi,Mi]∪

⋃
Ri⊂B◦

Ri× [ni, Ni].

Using the fact that f, g are uniformly continuous and that the diameter of Ri is less than
δ, since f and g take their maxima and minima in Ri ⊂ B◦ we have Mi − mi < ε and
Ni − ni < ε. It follows that the total volume of the covering boxes is less than∑

Ri∩∂B 6=∅

V (Ri × [−M,M ]) +
∑

Ri⊂B◦
V (Ri × [mi,Mi]) +

∑
Ri⊂B◦

V (Ri × [ni, Ni])

= 2M
∑

Ri∩∂B 6=∅

V (Ri) +
∑

Ri⊂B◦
V (Ri)(Mi −mi) +

∑
Ri⊂B◦

V (Ri)(Ni − ni)

≤ 2εM + ε
∑

Ri⊂B◦
V (Ri) + ε

∑
Ri⊂B◦

V (Ri)

≤ 2εM + εV (R) + εV (R) = (2M + 2V (R))ε.

which is arbitrarily small for small ε. Thus

V (∂B × [−M.M ] ∪ S ∪ T ) = 0.

which implies V (∂A) = 0 and A is Jordan.

2. Suppose that A,B ⊂ Rd are Jordan regions such that V (A∩B) = 0. Let f : A∪B → R be
a bounded function. Show that f is integrable on A and g is integrable on B if and only if
f is integrable on A ∪B. If this is true, then∫

A

f dV +

∫
B

f dV =

∫
A∪B

f dV.

[Taylor, p. 293, Problem 5.]

Let R be a big rectangle such that A ∪ B ⊂ R. Recall that if E ⊂ R then fE = χEf , the
function that is f on E and zero off E. Let E ⊂ R be a Jordan region. We use the theorem
that necessary and sufficient for f being integrable on E is that for every ε > 0 there is a
partition P such that

U(fE ,P)− L(fE ,P) < ε.

Let us assume that f is integrable on A and f is integrable on B to show f is integrable
on A ∪ B. Hence f is bounded: there is M < ∞ such that |f | < M . Moreover, we have
V (A ∩B) = 0. Thus there are partitions P1, P2 and P3 such that

U(fA,P1)− L(fA,P1) < ε

U(fB ,P2)− L(fB ,P2) < ε

U(χA∩B ,P3)− L(χA∩B ,P3) < ε
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Let P be the common refinement of P1, P2 and P3 and {Ri} = Pj and {R′i} = P their
rectangles. Let

m′i = inf
R′i

f, M ′i = sup
R′i

f.

We compute

U(fA∪B ,P)− L(fA∪B ,P) =
∑
R′i

(M ′i(fA∪B)−m′i(fA∪B))V (R′i)

=
∑

R′i∩B=∅

(M ′i(fA∪B)−m′i(fA∪B))V (R′i)

+
∑

R′i∩A∩B 6=∅

(M ′i(fA∪B)−m′i(fA∪B))V (R′i)

+
∑

R′i∩A=∅

(M ′i(fA∪B)−m′i(fA∪B))V (R′i)

≤
∑

R′i∩B=∅

(M ′i(fA)−m′i(fA))V (R′i)

+ 2M
∑

R′i∩A∩B 6=∅

V (R′i)

+
∑

R′i∩A=∅

(M ′i(fB)−m′i(fB))V (R′i)

≤
∑
R′i

(M ′i(fA)−m′i(fA))V (R′i)

+ 2M
∑

R′i∩A∩B 6=∅

V (R′i)

+
∑
R′i

(M ′i(fB)−m′i(fB))V (R′i)

≤ U(fA,P)− L(fA,P)

+ 2M(U(χA∩B ,P)− L(χA∩B ,P)

+ U(fB ,P)− L(fB ,P)

≤ U(fA,P1)− L(fA,P1)

+ 2M(U(χA∩B ,P2)− L(χA∩B ,P2)

+ U(fB ,P3)− L(fB ,P3)

≤ ε+ 2Mε+ ε = (2 + 2M)ε

where, for example, we have used

M ′i(fA∪B)−m′i(fA∪B) = M ′i(fA)−m′i(fA) (1)

for rectangles R′i ∩B = ∅ and the refinement inequality

U(fB ,P)− L(fB ,P) ≤ U(fB ,Pj)− L(fB ,Pj). (2)

Since ε was arbitrary, f is integrable on A ∪B.

Let us assume that f is integrable on A∪B to show f is integrable on A and f is integrable
on B. We do integrable on A. Integrable on B is similar. Thus there are partitions P1, P2

such that

U(fA∪B ,P1)− L(fA∪B ,P1) < ε

U(χA∩B ,P2)− L(χA∩B ,P2) < ε
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Let P be the common refinement of P1 and P2. We estimate

U(fA,P)− L(fA,P) =
∑
R′i

(M ′i(fA)−m′i(fA))V (R′i)

=
∑

R′i∩B=∅

(M ′i(fA)−m′i(fA))V (R′i)

+
∑

R′i∩A∩B 6=∅

(M ′i(fA)−m′i(fA))V (R′i)

≤
∑

R′i∩B=∅

(M ′i(fA∪B)−m′i(fA∪B))V (R′i)

+ 2M
∑

R′i∩A∩B 6=∅

V (R′i)

≤
∑
R′i

(M ′i(fA∪B)−m′i(fA∪B))V (R′i)

+ 2M
∑

R′i∩A∩B 6=∅

V (R′i)

= U(fA∪B ,P)− L(fA∪B ,P)

+ U(χA∩B ,P)− L(χA∩B ,P)

≤ U(fA∪B ,P1)− L(fA∪B ,P1)

+ U(χA∩B ,P2)− L(χA∩B ,P2)

≤ ε+ 2Mε = (1 + 2M)ε.

where we have used (1) for R′i ∩B = ∅ and (2). Since ε was arbitrary, f is integrable on A.

Finally, if either f is integrable on A∪B or f is integrable on both A and B then it follows
that f is integrable on all sets A, B, A ∪B and A ∩B so that the functions add

fA∪B = fA + fB − fA∩B

so ∫
A∪B

f =

∫
R

fA∪B =

∫
R

fA +

∫
R

fB −
∫
R

fA∩B =

∫
A

f +

∫
B

−0,

proving the claimed equation.

3. Let L : Rd → Rd be a singular linear map and E ⊂ Rd be a Jordan region. Then the
volume L(E) has volume zero. [Taylor, p. 314, Problem 2.]

The map is singular if the matrix LT has a nontrivial null vector w ∈ Rd. In other words
wTL = 0 or w • L(x) = 0 for all x ∈ Rd. It follows that L(E) is contained in the subspace
w⊥. One of the components of w is nonzero (lest w = 0), so we finish the argument in case
that wd 6= 0. If another component is nonzero we argue similarly. Since E is Jordan, it is
bounded, and L is Lipschitz so L(E) is bounded. Let R ⊂ Rd be a big rectangle of the
form R = S × [−M,M ] where S is a rectangle of Rd−1 that contains L(E). We shall show
that the set T = R ∩ w⊥ has volume zero, and so its subset L(E) has volume zero too. A
point x = (s, t) is in w⊥ if w • x = 0. Solving for t, we find

T =

{
(s, t) : s ∈ S, t = f(s) = −w1

wd
s1 − · · · −

wd−1

wd
s1

}
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To show V (T ) = 0 we use the theorem that V (T ) = 0 if and only if every ε > 0 there are
finitely many boxes Ri such that

T ⊂
⋃
i

Ri and
∑
i

V (Ri) < ε.

Choose ε > 0. Put

λ = |∇f | =

√
w2

1

w2
d

+ · · ·+
w2

d−1
w2

d

,

the slope of T . Choose a partition P = {Si} of S with mesh (maximal box diameter) less

than
ε

V (S)λ+ 1
. Let

mi = inf
Si

f, mi = sup
Si

f

Then T is covered by the rectangles Si × [mi,Mi]. But Mi −mi <
ε

V (S)
since points of Si

are less than
ε

V (S)λ+ 1
apart. Hence

T ⊂
⋃
i

Si × [mi,Mi] and
∑
i

V (Si × [mi,Mi]) <
ε

V (S)

∑
i

V (Si) = ε.

Since ε was arbitrary, T has volume zero and so does its subset L(E).
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