Math 3220 § 2.

Third Midterm Exam
Treibergs

Name: Solutions
April 4, 2018

1. Let f: RP — RY be a function. State the definition: f is a differentiable at a € RP. Using
just the definition, determine whether f : R? — R? is differentiable at x) € R? and prove

your answer, where
T 1—y
() -(2)

F : R? — RY is differentiable at a € RP if there is a ¢ X p matrix M such that

lim F(a+h)—F(a) — Mh _o.
h—0 |h]

We show that f is differentiable at

€ R?. If the given function were differentiable,
Y
then the matrix is given by the Jacobian
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Then the norm of the difference quotient limits to zero. Indeed,

\f(@+hy+k)— fz,y) — M(})|

W1 l—y—k—(1-y)— (k)
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as (h,k) — (0,0). Thus f is differentiable at (I) € R? and df (I> = ( 0 >
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Find df (x), dg(a), and d(f og)(a). Determine all x where f has a local inverse in the
neighborhood of x. Does it have a local inverse in a neighborhood of the vector b? If so,
what is d(f~1)(f(b))? Be sure to verify that the hypotheses are fulfilled for any theorems

Yyou use.

By the chain rule,

0 z vy 0 1 3
dfx)=11 0 0/ dfb)=11 0 of-:
01 0 01 0
0 2w 0 4
u
dg =11 1]: dg(a)=|[1 1
v
2u 0 2 0
01 3|0 4 71
d(fog)(a)=df(g9(a))dg(a) =df(b)dgla)=|1 0o of|1 1]|=1]0 4
01 0/\20 11

The function f(x) is polynomial, so is C* which is the first condition for the Inverse Function
Theorem. The determinant of the differential det(df(x)) = y so that the inverse function
theorem applies when df(x) is invertible, which is when y # 0. At a this holds. Thus
f is locally invertible at a: there are open sets a € U and b € V and a C!' function
f71=g:V — U such that g(f(x)) =z all z € U and f(g(y)) = y all y € V. Moreover,
dg(y) = df (g(y))~! for all y € V. In particular, using, e.g., Cramer’s rule

-1

A B) = @B =@®) =1 0 o =3]0 0 3

as one can eaasily check.



3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a)

Suppose f(x,y) is a continuous function such that all first partial derivatives exist at
all (z,y) € R%. Then f is differentiable at all (z,y) € R

FALSE. The function

3

2+ g2 if (z,y) # (0,0);

fla,y) =
0, if (z,y) = (0,0).

is continuous and has partial derivatives everywhere, but is not differentiable at (0, 0).
For (z,y) # (0,0), the function is a quotient of differentiable functions, so continuous
and first partials exist and are continuous. Note that |f(z,y) — f(0,0)| = |f(z,y)| <
V2 +y? so f is continuous at (0,0). The partial derivatives exist at (0,0). In
particular

of F(h+0,0)— f(0,0)  h3

gz 00 = jim n = fm s =L
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If f were differentiable at (0, 0), its differential would be the Jacobian matrix df (0,0) =
(1,0). However, the limit of the difference quotient

oy (A F 0k +0) = £(0,0) — df(0,0)(})
(h,k)—(0,0) |(h, k)|
h3
2 2 h
lim Rtk
(h:k)—(0,0)  /h2 + k2
. —hk3
= lim @—
(h,k)=(0,0) (h? 4 k2)2

does not exist because it takes different values for different approaches to (0,0). For
example if the approach is (h, k) = (¢,t) as t — 0 then the limit is —2~% whereas if the
approach is (¢,0) then the limit is 0. Thus the function is not differentiable at (0, 0).

Suppose U C R? is open and f € C1(U,R?) satisfies df (z) is invertible for all z € U.
Then f is one-to-one on U.

FALSE. Consider the map on open D C R? to R? given by

f(i) = <x22$yy2>, (Z) eD= {(5) cR?: if:vg()theny#O}.

0 0 -1
Then f is not one-to-one on D because, for example f(1> = f(_1> = ( 0 )

However, the differential is
df T\ _ 2¢ — 2y
Y 2y 2z

whose determinant is 4(z2 + y?) which does not vanish in D.
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Suppose f,g € CH(RP,RP) such that f o g(x) = x for all x € RP. Then dg(x) is
invertible for all x € RP.
TRrUE. Differentiating f o g(x) = = we get from the chain rule

df (g(x)) dg(x) =1
which implies that the p x p matrix dg(z) is invertible.

Let S = {(z,y,2) € R® : wy + 2 = 7 and y* — 4z = 0}. What is the dimension of the
tangent space to S at the point (3,2,1)? Why? Find the tangent space at (3,2,1).

xYy + 2
Let =
functions. The differential

). Then S = g1 (g) is a level set of three space cut by two

y = 1 2 3 1
df(x7 y7 Z) = Y df(37 27 1) =
0 2y —4 0 4 —4

which has rank 2 at (3,2,1). Thus the dimension of the tangent space is the dimension
of the kernel of df(3,2,1) which is the number of free variables = 3 — rank = 1. The
affine space tangent to S at (3,2, 1) is

3 3 -2

2| +kerdf(3,2,1)=]92|+<t] 1 |:teR
1 1 1

Let f(z,y) = cos(zy). Find the degree n = 2 Taylor formula with remainder for f at
the point (0,0).
The function is C*° so second and third partial derivatives may be done in any order
and the differentials of any order exist. We compute
fo(@,y) = —sin(zy)y, fy(2,y) = —sin(zy)z;
Jaa(2,y) = —cos(zy)y”™,  foy(x,y) = —cos(zy)zy —sin(zy), fyy(z,y
Fran(, in(ey)y®,  foay(z,y) = sin(zy)ey® — 2 cos(zy)y,

2 = — cos(zy)z?;
y) =s
Foyy(@,y) = sin(zy)a?y — 2cos(zy)z,  fyyy(z,y) = sin(zy)a®.
f(x

)
)

which are all zero i

)

)

)

(z,y) = (0,0). Hence f(0,0) =1, and both df(0,0) and d?f(0,0)
vanish. Letting z = (z

_8), it follows that Taylor’s expansion to second order is

f(z,y) = £(0,0) +df(0,0)(2) + %de(0,0)(z,z) + Ry(z,y) =14+0+0+ Rao(z,vy)

where
Ra(e,9) = ] Foaa( 2 4 3o (0020 4 3o (10 + |
- é{ [sin(hk)k?’] 2% 13 [sin(hk)hk2 _9 cos(hk)k} 2y
+3 [sin(hk)fﬂk —9 cos(hk)h] zy® + [sin(hk)h?’] y3}

and where (h, k) is some point on the line segment from (0,0) to (x,y).



5. Find the minimum of f(z,y,z) = 2% + y* + 22 subject tox —y =1 and y* — 2* = 1.
Let g(z,y,2) = 2 —y — 1 and h(z,y,2) = y?> — 22 — 1. The constraint set S = {(z,v,2) :
g(x,y,2) = h(z,y,z) = 0} is the intersection of a hyperbolic cylinder with a plane, thus
consists of two hyperbolic lines in R3. Thus we expect at least one critical point of f on each
nappe of the hyperbola. Also, f is unbounded on S, so there are no maxima. Functions
here are smooth. Necessary conditions are given by Lagrange multipliers. We seek A and p
such that

Vf(x,y,2) = AVg(z,y,2) + pVh(z,y, 2)
(23;’ 2ya 22) = A(la _17 O) + /.t(O, 2.% _22)

Thus we must solve the five equations for =, y, z, A\,

2c =\ (1)

2y = —A+2uy (2)

22 = —2uz (3)
r—y=1 (4)
y?— 22 =1. (5)

(3) tells us that 2z(1 + p) = 0 so either = —1 or z = 0.
A A
If 4 = —1 then (2) says 4y = —Aor y = 1 (4) tells us that 22 =242y =2 — 3 But

4 1 1
(1) says A =2z so A = 3 and thus y = —3 Finally, (5) says 9= y? =1+ 2% > 1, which is
a contradiction. The case ;4 = —1 doesn’t happen.
Thus we must have z = 0. Then (5) says y = 1. If y = 1, then (4) saysz =1+y =2
so at this critical point f(2,1,0) = 5. If y = —1 then (4) says z = 1+ y = 0 so at this
critical point, f(0,—1,0) = 1. Since we have found all critical points, the minimizer occurs
at (0,—1,0) where f = 1.



