
Math 3220 § 2.
Treibergs

First Midterm Exam Name: Solutions
January 31, 2018

1. Let F,G ⊂ Rd. Define: G is an open set. Define: F is a closed set. Using just your
definitions, show that if F is closed and G is open then F\G is closed.

G is open if for every x ∈ G there is r > 0 so that the ball of radius r about x satisfies
Br(x) ⊂ G. F is closed if the complement F c is open.

To show F\G is closed, it suffices to show that (F\G)c is open. But, by De Morgan’s law,

(F\G)c = (F ∩Gc)c = F c ∪G

where F c is open by the assumption that F is closed and G is open by assumption. The
union of two opens is open. To see it choose x ∈ F c ∪ G. Either x ∈ F c or x ∈ G. In the
first case, there is r > 0 so that Br(x) ⊂ F c ⊂ F c ∪G since F c is open. In the second case,
there is r > 0 so that Br(x) ⊂ G ⊂ F c ∪G since G is open. Thus we have shown for every
x ∈ (F\G)c there is an r > 0 so that Br(x) ⊂ (F\G)c. This says (F\G)c is open, thus F\G
is closed.

2. The cross product for u, v ∈ R3 is defined by

u× v := (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

It satisfies ‖u× v‖ ≤ ‖u‖ ‖v‖ for all u, v ∈ R3. Let {un} and u be a sequence and point in
Rd. Define: un → u as n → ∞. Assume un → u and vn → v as n → ∞ in R3. Prove
using just the definition and vector space properties that that

un × vn → u× v as n→∞.

un → u as n→∞ means for every ε > 0 there is an N ∈ R so that

‖un − u‖ < ε whenever n ≥ N .

First, un is convergent, thus bounded. Indeed, by convergence, for ε = 1, there is an N1 ∈ R
so that

‖un − u‖ < 1 whenever n ≥ N1.

Hence, if n ≥ N1 we have

‖un‖ = ‖un − u+ u‖ ≤ ‖un − u‖+ ‖u‖ ≤ 1 + ‖u‖.

Choose ε > 0 to show un × vn → u × v as n → ∞. Since un → u, for every ε > 0 there is
N2 ∈ R so that

‖un − u‖ <
ε

2 + ‖u‖+ ‖v‖
whenever n ≥ N2.

Since vn → v, there is N3 ∈ R so that

‖vn − v‖ <
ε

2 + ‖u‖+ ‖v‖
whenever n ≥ N3.

Let N = max{N1, N2, N3}. If n ≥ N then adding and subtracting cross terms, using the
triangle inequality, the linearity of u and v in u× v and the upper bound we get

‖un × vn − u× v‖ = ‖un × vn − un × v + un × v − u× v‖
≤ ‖un × vn − un × v‖+ ‖un × v − u× v‖
≤ ‖un × (vn − v)‖+ ‖(un − u)× v‖
≤ ‖un‖ ‖vn − v‖+ ‖un − u‖ ‖v‖

≤ (1 + ‖u‖)ε
2 + ‖u‖+ ‖v‖

+
‖v‖ε

2 + ‖u‖+ ‖v‖
< ε.
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Or you could argue that the components of the cross product are differences of products
of converging scalar sequences which arise as components of converging vector sequences.
Hence they converge by the main limit theorem for scalar sequences.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Let ‖u‖ denote the Euclidean norm on Rd. Then the function δ(x, y) = ‖x− y‖2 is a
metric on Rd.

False. The triangle inequality fails. Take u ∈ Rd such that ‖u‖ = 1. Let v = 1
2u.

Then

δ(0, v) + δ(v, u) = ‖v − 0‖2 + ‖u− v‖2 =
1

22
‖u‖2 +

1

22
‖u‖2 =

1

4
+

1

4
=

1

2

is less than δ(0, u) = ‖u− 0‖2 = 1.

(b) Suppose E ⊂ R2 is not open. Then E = E.

False. The set E = [0, 1) × [0, 1) is not open since no ball about (0, 0) is in E. But
E = [0, 1]× [0, 1] does not equal E.

(c) Let {xn} ⊂ ∂E be a subsequence contained in the boundary of the set E ⊂ Rd. If it
converges in Rd, then limn→∞ xn ∈ ∂E.

True. It is a consequence of the closedness of ∂E. To see the closedness, ∂E =
E\E◦ = E ∩ (E◦)c is the intersection of closed sets, so is closed. Now {xn} ⊂ ∂E so
limn→∞ xn ∈ ∂E since closed sets contain their limit points.

4. Let K ⊂ Rd. Define: the set K is compact. Let K ⊂ Rd be a compact set and C ⊂ K be a
closed set. Show directly from the definition (without using the Heine-Borel Theorem) that
C is a compact set.

We wish to show that any open cover of C has a finite subcover. Let {Gα}α∈A be an open
cover of C (so C ⊂ ∪α∈AGα.). It may not cover K. Throw in another open set Cc to make
a larger cover {Cc} ∪ {Gα}α∈A. Now K is covered by the enlarged cover

K ⊂ Cc ∪

(⋃
α∈A

Gα

)

because K ∩ C is covered by the original cover and if x ∈ K\C then x ∈ Cc. By the
compactenss of K, there is a finite collection α1, α2, . . . , αp in A such that

K ⊂ Cc ∪Gα1
∪ · · · ∪Gαp

where we’ve added one additional set Cc whether or not it was one of the finite list covering
K. Since Cc ∩ C = ∅, we may discard Cc to find

C ⊂ Gα1
∪ · · · ∪Gαp

.

In other words, we found a finite subcover for C, hence C is compact.

5. Determine the radius of convergence.

f(x) ∼ 3 + x+ 22x2 + 32x3 + x4 + 25x5 + 36x6 + x7 + 28x8 + 39x9 · · ·

Suppose that g ∈ C∞(R). Assume that for some M <∞, the kth derivative |g(k)(z)| ≤ M
for all k = 0, 1, 2, 3, . . . and all z ∈ R. Show that the Maclaurin Series for g(x) converges
for all R.
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The coefficients of the power series f(x) are c0 = 3 and for n ≥ 1,

cn =


1n, if n ≡ 1 mod 3;

2n, if n ≡ 2 mod 3;

3n, if n ≡ 0 mod 3.

Hence, for n ≥ 1 we have

|cn|
1

n =


1, if n ≡ 1 mod 3;

2, if n ≡ 2 mod 3;

3, if n ≡ 0 mod 3.

It follows that from the formula for the radius of convergence

1

R
= lim sup

n→∞
|cn|

1

n = 3

so R =
1

3
.

To prove that the Maclaurin series converges for all x we must show that the partial sums
(the Taylor polynomials) converge to g(x) as n→∞. The Taylor polynomial is given by

gn(x) = g(0) + g′(0)x+
1

2
g′′(0)x2 + · · ·+ 1

n!
g(n)(0)xn

which makes sense for all n because we assumed that g was infinitely differentiable. For
fixed x ∈ R, the error from Taylor’s remainder formula is estimated by the given assumption

|g(x)− gn(x)| = |Rn(x)| =
∣∣∣∣g(n+1)(cn)

(n+ 1)!
xn+1

∣∣∣∣ ≤ M |x|n+1

(n+ 1)!
−→ 0 as n→∞,

where cn are some numbers between 0 and x. The error tends to zero since the factorial
overwhelms the power. Since x was arbitrary, the Maclaurin series converges for all x ∈ R.
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