
Math 3220 § 2.
Treibergs −−σιι

Final Exam Name: Solutions
May 1, 2018

1. Determine whether the following function f : R2 → R is differentiable at (0, 0).

f(x, y) =


y sin(x2 + y2)

x2 + y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

f is differentable at (0, 0). Note that f(x, 0) = 0 for all x so that the partial derivative
fx(0, 0) = 0 and that

fy(0, 0) = lim
h→0

f(0, h)

h
= lim
h→0

h sin(h2)

h3
= lim
h→0

sin(h2)

h2
= 1.

Hence if differentiable, the differential would be df(0, 0)(h, k) = k. Plugging into the two
dimensional difference quotient we see

lim
(h,k)→(0,0)

|f(h, k)− f(0, 0)− df(0, 0)(h, k)|
‖(k, h)‖

= lim
(h,k)→(0,0)

∣∣∣∣k sin(h2 + k2)

h2 + k2
− k
∣∣∣∣

√
h2 + k2

= lim
(h,k)→(0,0)

|k sin(h2 + k2)− k(h2 + k2)|
(h2 + k2)

3/2

= lim
(h,k)→(0,0)

|k|
∣∣sin(h2 + k2)− (h2 + k2)

∣∣
(h2 + k2)

3/2

≤ lim
(h,k)→(0,0)

∣∣sin(h2 + k2)− (h2 + k2)
∣∣

h2 + k2
= 0,

where we have used l’Hôpital’s rule

lim
t→0

sin t− t
t

= lim
t→0

cos t− 1

1
= 0.

Hence f(x, y) is differentiable at (0, 0) and df(0, 0)(h, k) = k.

2. Let A ⊆ Rd. Define: A is a compact set. Let E = {(x, y) ∈ R2 : x2 + 2y2 = 1}. Is E
compact? Why? For the set E, is there a point x ∈ E closest to (0, 0)? Why?

A set A ⊂ Rd is compact if every open cover has a finite subcover. That is, if there is a
family of open sets {Uβ}β∈B in Rd such that A ⊂ ∪β∈BUβ then there are finitely many
β1, . . . , βk such that A ⊂ Uβ1

∪ · · · ∪ Uβk
.

E is compact because it is closed and bounded by the Heine-Borel Theorem. To see it’s
bounded, every (x, y) ∈ E satisfies ‖(x, y)‖ =

√
x2 + y2 ≤

√
x2 + 2y2 = 1. To see it’s

closed, consider a sequence (xn, yn) ∈ E which converges (xn, yn) → (x, y) as n → ∞ in
R2, we have by continuity 1 = limn→∞ x2n + 2y2n = x2 + 2y2 so (x, y) ∈ E. But since E
contains its limit points, it is closed.

The distance from (x, y) to (0, 0) is given by f(x, y) = ‖(x, y)‖ which is continuous because,
by the reverse triangle inequality,

∣∣‖(x, y)‖−‖(p, q)‖
∣∣ ≤ ‖(x−p, y−q)‖ so f(x, y) is Lipschitz,

hence continuous. A continuous function takes its minimum on a compact set. Thus there
is an (x0, y0) ∈ E such that f(x0, y0) = inf{f(x, y) : (x, y) ∈ E}. Thus (x0, y0) ∈ E is a
closest point of E to the origin.
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3. Let

f(x, y, z, u, v) = x+ 2y + 3u− zv,
g(x, y, z, u, v) = xy + zu+ v,

S = {(x, y, z, u, v) ∈ R5 : f(x, y, z, u, v) = 2 and g(x, y, z, u, v) = 19}.

Define: S is a regular parameterized p-dimensional surface. Show that S is a regular pa-
rameterized p-dimensional surface. Is S 6= ∅? What is p?

S ⊂ Rn is a regular parameterized p dimensional surface if for every P0 ∈ S there is an
open subset U ⊂ Rn such that P0 ∈ U , an open V ⊂ Rp and a one-to-one C1 function
G : V → Rn where P0 = G(Q0) for some Q0 ∈ V and image G(V ) = U ∩ S such that
dG(Q) has rank p at all Q ∈ V . The image G(V ) ⊂ S is called a local C1 parameterization
of S.

In this case, S is a p = 3 dimensional parameterized surface in R5. To show S is not empty,
we solve the equations. Setting x = y = 0 and z = 1, the equations reduce to

2 = f(0, 0, 1, u, v) = 3u− v,
19 = g(0, 0, 1, u, v) = u+ v,

whose solution is u = 5.25 and v = 13.75. Thus (0, 0, 1, 5.25, 13.75) ∈ S.

Since F (x, y, z, u, v) = (f(x, y, z, u, v), g(x, y, z, u, v) is polynomial, it is C1. The differential
of F is

dF (x, y, z, u, v) =

1 2 −v 3 −z

y x u z 1

 .

The determinant of the last 2×2 submatrix is 3+z2 > 0, so it is invertible: the linearization
of F at a point (x0, y0, z0, u0, v0) ∈ S may be solved for (u, v) as functions of (x, y, z). By
the implicit function theorem, there is an open set U ∈ R5 such that (x0, y0, z0, u0, v0) ∈ U
and an open set V ∈ R3 such that (x0, y0, z0) ∈ V and C1 functions h(x, y, z) and k(x, y, z)
on V such that

(x, y, z, u, v) ∈ U ∩ S ⇐⇒ u = h(x, y, z) and v = k(x, y, z) for some (x, y, z) ∈ V .

It follows that S is a parameterized p = 3 dimensional surface as it is a graph. The function

G(x, y, z) = (x, y, z, h(x, y, z), k(x, y, z))

parameterizes the surface near (x0, y0, z0, u0, v0). It is one-to-one since it is a graph and dG
has rank three because dGx,y,z = I.

4. Determine whether the statement is true or false. If true give a brief reason. If false, give
a counterexample.

(a) Statement. Let U ⊂ Rd be open and K ⊂ U be a compact convex set with nonempty
interior and f ∈ C1(U). Then there is L < ∞ such that |f(x) − f(y)| ≤ L|x − y| for
all x, y ∈ K.

True. Since f is continuously differentiable, df(x) is continuous on a compact set K
so that

L = sup
x∈K
‖df(x)‖
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is finite and bounds the gradient. Since K is convex, for every pair of points x, y ∈ K
the whole line segment xy is in K. Thus, by the Mean Value Theorem, there is
c ∈ xy ⊂ K such that

f(y)− f(x) = df(c)(y − x)

so that
|f(y)− f(x)| ≤ ‖df(c)‖ ‖y − x‖ ≤ L‖y − x‖.

(b) Statement. Let E ⊂ R2 consist of countably infinitely many distinct points

E =

∞⋃
i=1

{xi}. Then E is not a Jordan region.

False. (BE CAREFUL ABOUT LOGIC!) For some collections of points, E may be
a Jordan region. For example, the set

E =

{(
1

n
,

1

n

)
: n ∈ N

}
is contained in the segment S = {(t, t) : 0 ≤ t ≤ 1}, which has volume zero in R2.
Thus, as its subset, E also has volume zero and is a Jordan region.

Of course, some subsets are not Jordan regions. For example if E′ = {xn} is an
enumeration of the rational points in the unit square [0, 1] × [0, 1] then ∂E′ is the
whole square of positive volume, so this E′ is not a Jordan region.

(c) Statement. Let R = [0, 1]2, f, fn : R→ R be integrable functions such that f(x, y) =

lim
n→∞

fn(x, y) for all (x, y) ∈ R. Then

∫
R

f(x, y) dV (x, y) = lim
n→∞

∫
R

fn(x, y) dV (x, y).

False. The function

fn(x, y) =

{
n2, if 0 < x < 1

n and 0 < y < 1
n ;

0, otherwise.

converges pointwise to f = 0. But, since fn are continuous except on a set of volume
zero, they are integrable. Moreover

∫
R
fn(x, y) dV (x, y) = 1 for all n, which does not

converge to zero.

5. Let R ⊆ Rd be an be an aligned rectangle in the in the plane and f be a real valued function

on R. Define both: f is integrable on R and

∫
R

f(x) dV (x). Complete the statement of a

theorem. Using only your theorem, show that a linear function f(x) = ax+ by, where a and
b are constants, is integrable on R = [0, 2]× [0, 3].

Theorem. Let R ⊂ Rd be a rectangle and f : R→ R be a bounded function. Then
f is integrable on R if and only if

There is a sequence of partitions Pn of R such that

U(f,Pn)− L(f,Pn)→ 0 as n→∞.

f is integrable in R means that the upper integral equals the lower integral∫
R

f(x) dV (x) =

∫
R

f(x) dV (x)
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where ∫
R

f(x) dV (x) = sup
P
L(f,P),

∫
R

f(x) dV (x) = inf
P
U(f,P)

where inf and sup of lower and upper sums are taken over partitions of R. If f is integrable
on R, then its integral is the common value∫

R

f(x) dV (x) =

∫
R

f(x) dV (x) =

∫
R

f(x) dV (x).

Let Pn = {Si} be the partition of R into 6n2 many 1
n ×

1
n squares Si. f is C1 since it is

linear and its gradient df(x, y) = (a, b) has norm L =
√
a2 + b2. By Problem 4a above,

|f(x, y)− f(xi, yi)| ≤ L‖(x, y)− (xi, yi)‖

where (x, y) ∈ Si is any point and (xi, yi) is in the center of Si. It follows that

Mi = sup
(x,y)∈Si

f(x, y) ≤ f(xi, yi) + sup
(x,y)∈Si

[
f(x, y)− f(xi, yi)

]
≤ f(xi, yi) +

Ldiam(Si)

2

mi = inf
(x,y)∈Si

f(x, y) ≥ f(xi, yi) + inf
(x,y)∈Si

[
f(x, y)− f(xi, yi)

]
≥ f(xi, yi)−

Ldiam(Si)

2
.

Since the diameter of Si is
√
2
n , it follows that

Mi −mi ≤ Ldiam(Si) =

√
2L

n
.

Summing over all squares of the partition,

U(f,Pn)− L(f,Pn) =

6n2∑
i=1

(Mi −mi)V (Si) ≤ 6n2 ·
√

2L

n
· 1

n2
→ 0

as n→∞. Thus f is integrable on R by the theorem.

6. Let D ⊆ R2 be the region in the first quadrant bounded by the curves u+ v = 3, u+ v = 5,
2v = u, and 2v = u + 4. Find an open set U ⊆ R2, a one-to-one function ϕ ∈ C1(U,R2)
such that det(dϕ(x, y)) 6= 0 for all (x, y) ∈ U and an aligned rectangle R ⊆ U such that

D = ϕ(R). By changing variables using ϕ, find the integral

∫
D

u dV (u, v).

Use the boundary curves to make the transformation

x = u+ v

y = −u+ 2v
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Then R = {(x, y) : 3 ≤ x ≤ 5 and 0 ≤ y ≤ 4}. Solving for (u, v) in terms of (x, y) we findu
v

 = ϕ

x
y

 =

 2
3x−

1
3y

1
3x+ 1

3y


The differential

dϕ =

 2
3

1
3

1
3

1
3


whose determinant is 1

9 so dϕ(x, y) is invertible. Thus ϕ is one to one because the linear
map is invertible, C1 since it’s linear, with nonsingular Jacobian in the whole plane U = R2

such that D = ϕ(R).

Because also the function f(u, v) = u is continuous on U , we satisfy conditions for the
change of variables formula and iterated integrals∫

D

u dV (u, v) =

∫
ϕ(R)

f(u, v) dV (u, v)

=

∫
R

f(ϕ(x, y)) |det dϕ(x, y)| dV (x, y)

=

∫
R

(
2

3
x− 1

3
y

)
· 1

9
dV (x, y)

=
1

27

∫ 5

x=3

∫ 4

y=0

(2x− y) dy dx

=
1

27

∫ 5

x=3

[
2xy − y2

2

]4
y=0

dx

=
1

27

∫ 5

x=3

[8x− 8] dx

=
1

27

[
4x2 − 8x

]5
x=3

=
1

27
[4 · 16− 8 · 2] =

16

9
.
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7. (a) Let f : R2 → R2 be defined by f

x
y

 =

 x+ sin y√
1 + x2 + y2

. Determine whether f is

uniformly continuous on R2 and prove your result.

f is Uniformly Continuous on R2. Choose ε > 0. Let δ = ε
6 . Choose (x1, y1), (x2, y2) ∈

R2 such that ‖(x1, y1) − (x2, y2)‖ < δ, we find using ‖(u, v)‖ ≤ |u| + |v| and | sinu −
sin v| ≤ |u− v| for all u, v,

‖f(x1, y1)−f(x2, y2)‖ ≤ |(x1 + sin y1)− (x2 + sin y2)|+
∣∣∣∣√1 + x21 + y21 −

√
1 + x22 + y22

∣∣∣∣
≤ |x1 − x2|+ | sin y1 − sin y2|+

|(1 + x21 + y21)− (1 + x22 + y22)|√
1 + x21 + y21 +

√
1 + x22 + y22

≤ |x1 − x2|+ |y1 − y2|+
|x21 − x22|+ |y21 − y22 |√

1 + x21 + y21 +
√

1 + x22 + y22

= |x1 − x2|+ |y1 − y2|+
|x1 + x2| |x1 − x2|+ |y1 + y2| |y1 − y2|√

1 + x21 + y21 +
√

1 + x22 + y22

≤ |x1 − x2|+ |y1 − y2|+
(|x1|+ |x2|) |x1 − x2|+ (|y1|+ |y2|) |y1 − y2|√

1 + x21 + y21 +
√

1 + x22 + y22

≤

(
1 +

|x1|√
1 + x21 + y21

+
|x2|√

1 + x22 + y22

)
|x1 − x2|

+

(
1 +

|y1|√
1 + x21 + y21

+
|y2|√

1 + x22 + y22

)
|y1 − y2|.

Thus using |u| ≤ ‖(u, v)‖ and |v| ≤ ‖(u, v)‖,

‖f(x1, y1)− f(x2, y2)‖ ≤ 3|x1 − x2|+ 3|y1 − y2|
≤ 6‖(x1 − y1, x2 − y2)‖
= 6‖(x1, x2)− (y1, y2)‖ < 6δ = ε.

Hence, f is uniformly continuous on R2. Indeed, it is Lipschitz on R2.

(b) Let f : Rd → R be continuous. Show that E = {x ∈ Rd : f(x) > 0} is open.

To show that E is open, we have to show that for every z ∈ E there is δ > 0 such that
the whole open ball Bδ(z) ⊂ E. Choose z ∈ E. Then f(z) > 0. By continuity, we
argue that f(x) > 0 for every x close to z. Indeed, let ε = f(z) > 0. By continuity of
f , there is a δ > 0 such that |f(x) − f(z)| < ε whenever ‖x − z‖ < δ. I claim that if
x ∈ Bδ(z) then f(x) > 0 so x ∈ E. In other words, Bδ(z) ⊂ E so E is open.

To see the claim, suppose x ∈ Bδ(z). Hence ‖z − x‖ < δ. Thus

f(x) = f(z)− (f(z)− f(x)) ≥ f(z)− |f(z)− f(x)| > f(z)− ε = f(z)− f(z) = 0.
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8. Define: E ⊆ Rn is a Jordan Region. Show that E is a Jordan region, where

E = {(x, y) ∈ R2 : (x = 0 and 0 ≤ y ≤ 1) or (y = 0 and 0 ≤ x ≤ 1) }.

A set E ∈ Rn is a Jordan Region if the characteristic function

χE =

{
1, if x ∈ E;

0, if x /∈ E.

is integrable in any aligned rectangle R ⊂ Rn such that E ⊂ R. Integrable in R means that
the upper integral equals the lower integral∫

R

χE(x) dV (x) =

∫
R

χE(x) dV (x)

where ∫
R

χE(x) dV (x) = sup
P
L(χE ,P),

∫
R

χE(x) dV (x) = inf
P
U(χE ,P)

where inf and sup of lower and upper sums are taken over partitions of R.

The set E is “L” shaped. We show that the characteristic function χE is integrable in
R = [0, 1]× [0, 1]. We use the theorem in Problem 5 above as the criterion of integrability.
Let the partition Pn = {Si} divide R into n2 many 1

n ×
1
n subsquares Si. Then Mi =

sup{χE(x, y) : (x, y) ∈ Si} = 1 for all the squares Si along the x = 0 and y = 0 edges of
the square. There are 2n − 1 such subsquares Si that touch E. All other Mi = 0. Also
mi = inf{χE(x, y) : (x, y) ∈ Si} = 0 for all the squares Si . Thus

U(χE ,Pn)− L(χE ,Pn) =

n2∑
i=1

(Mi −mi)V (Si)

=
∑

Si∩E 6=∅

(1− 0)
1

n2

=
2n− 1

n2
→ 0

as n → ∞. Hence, χE is integrable so E is a Jordan Region. Because U(χE ,Pn) −
L(χE ,Pn) = U(χE ,Pn), this shows that 0 ≤ V̄ (E) ≤ U(χE ,Pn) → 0 as n → ∞ so E is a
Jordan Region of volume zero.
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