Math 3220 § 2. Final Exam Name:__Golutions
Treibergs ar May 1, 2018

1. Determine whether the following function f : R? — R. is differentiable at (0,0).
ysin(z? +y°) .

fag) =4 2ige o Y@ #0.0);

0, if (z,3) = (0,0).

f IS DIFFERENTABLE AT (0,0). Note that f(z,0) = 0 for all z so that the partial derivative
f2(0,0) =0 and that

.. f(O,r) .. hsin(h?) . sin(h?)
MOO=Im T =i e T e "

Hence if differentiable, the differential would be df(0,0)(h, k) = k. Plugging into the two
dimensional difference quotient we see

ksin(h? + k?)

eVl 0 Ay
(h.k)—(0,0) (&, 2l (hk)=(0,0) N
B - |ksin(h? + k?) — k(h? + k2)|
" (hk)—(0,0) (h2 + k2)%/?
B k| [sin(h2 + k2) — (h2 + K2)|
T (hk)—(0,0) (h2 + k2)%/>
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(h,k)—(0,0) h2 + k2

where we have used 'Hopital’s rule
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Hence f(z,y) is differentiable at (0,0) and df (0,0)(h, k) = k.

2. Let A C R%. Define: A is a compact set. Let E = {(z,y) e R? : 22 +2y?> = 1}. Is E
compact? Why? For the set E, is there a point x € E closest to (0,0)? Why?

A set A € R? is compact if every open cover has a finite subcover. That is, if there is a
family of open sets {Us}gep in RY such that A C UgepUp then there are finitely many
B1,..., Bk such that A C Ug, U---UUg,.

FE is compact because it is closed and bounded by the Heine-Borel Theorem. To see it’s
bounded, every (z,y) € E satisfies ||(z,)| = /22 + 4% < /22 +2y2 = 1. To see it’s
closed, consider a sequence (z,,y,) € E which converges (zn,yn) — (z,y) as n — oo in
R?, we have by continuity 1 = lim,, o, 72 + 2y2 = 2% + 2y% so (z,y) € E. But since E
contains its limit points, it is closed.

The distance from (z,y) to (0,0) is given by f(z,y) = ||(z, y)|| which is continuous because,
by the reverse triangle inequality, ||| (z, y)[|—|/(p, q)||| < |(x—p,y—q)| so f(x,y) is Lipschitz,
hence continuous. A continuous function takes its minimum on a compact set. Thus there
is an (x,y0) € F such that f(zo,yo) = inf{f(z,y) : (z,y) € E}. Thus (z9,y0) € F is a
closest point of F to the origin.




3. Let

f(xuy7zyuav) =£U+2y—|—3u—zv,
g(xa:%zauav) =xy+ zu+ v,
S = {(z,y,z,u,v) € R®: f(x,y, 2 u,v) =2 and g(x,y,z,u,v) = 19}.

Define: S is a reqular parameterized p-dimensional surface. Show that S is a regular pa-
rameterized p-dimensional surface. Is S # 0? What is p?

S C R™ is a regular parameterized p dimensional surface if for every Py € S there is an
open subset U C R™ such that Py € U, an open V C R” and a one-to-one C' function
G : V — R™ where Py = G(Qq) for some @y € V and image G(V) = U N S such that
dG(Q) has rank p at all Q € V. The image G(V) C S is called a local C! parameterization
of S.

In this case, S is a p = 3 dimensional parameterized surface in R®. To show S is not empty,
we solve the equations. Setting z = y = 0 and z = 1, the equations reduce to

2= f(0,0,1,u,v) = 3u — v,
19 =¢(0,0,1,u,v) = u+wv,

whose solution is u = 5.25 and v = 13.75. Thus (0,0, 1,5.25,13.75) € S.
Since F(x,vy,z,u,v) = (f(2,v,2,u,v),9(z,y, z,u,v) is polynomial, it is C*. The differential
of F'is
1 2 —v 3 —z
dF (z,y,z,u,v) =

y r uw z 1

The determinant of the last 2 x 2 submatrix is 3+22 > 0, so it is invertible: the linearization
of F' at a point (xo, Yo, 20, o, Vo) € S may be solved for (u,v) as functions of (z,y,z). By
the implicit function theorem, there is an open set U € R® such that (o, yo, 20, 1o, v0) € U
and an open set V' € R3 such that (z9,%0,20) € V and C! functions h(z,y, z) and k(z,y, )
on V such that

(z,y,z,u,v) €UNS < wu=h(z,y,2) and v = k(z,y, z) for some (z,y,z) € V.
It follows that S is a parameterized p = 3 dimensional surface as it is a graph. The function
G(LE, Y, Z) = (‘T7 Y, z, h(lE, Y, Z)? k(l‘, Y, Z))

parameterizes the surface near (xo, yo, 20, Uo, Vo). It is one-to-one since it is a graph and dG
has rank three because dG . = I.

4. Determine whether the statement is true or false. If true give a brief reason. If false, give
a counterezample.

(a) STATEMENT. Let U C R? be open and K C U be a compact convex set with nonempty
interior and f € CY(U). Then there is L < oo such that |f(z) — f(y)| < L|x — y| for
allz,y € K.

TRUE. Since f is continuously differentiable, df (x) is continuous on a compact set K
so that
L = sup ||df (z)]|
rzeK



is finite and bounds the gradient. Since K is convex, for every pair of points =,y € K
the whole line segment Ty is in K. Thus, by the Mean Value Theorem, there is
c € xy C K such that

fly) = f(x) =df(c)(y — )
so that
|f(y) — f@)] < ldf (o) lly —zl| < Llly — =

(b) STATEMENT. Let E C R? consist of countably infinitely many distinct points

(oo}
E= U{xz} Then E is not a Jordan region.

i=1
FaLse. (BE CAREFUL ABOUT LOGIC!) For some collections of points, E may be
a Jordan region. For example, the set

- {(32) e

is contained in the segment S = {(¢,) : 0 < t < 1}, which has volume zero in R2.
Thus, as its subset, F also has volume zero and is a Jordan region.

Of course, some subsets are not Jordan regions. For example if ' = {z,} is an
enumeration of the rational points in the unit square [0,1] x [0,1] then OFE’ is the
whole square of positive volume, so this E’ is not a Jordan region.

(c) STATEMENT. Let R =[0,1], f, fn : R — R be integrable functions such that f(x,y) =
liw £, () for all (2.9) € R Then [ f(e.)dV (o) = Y [ fu(o) Vo).
n— oo R n—oo R
FALSE. The function

n?, if0<x<%and0<y<%;
0, otherwise.

fn(xay) - {

converges pointwise to f = 0. But, since f, are continuous except on a set of volume
zero, they are integrable. Moreover [, fn(z,y)dV (z,y) = 1 for all n, which does not
converge to zero.

5. Let R C R be an be an aligned rectangle in the in the plane and f be a real valued function

on R. Define both: f is integrable on R and / f(x)dV(x). Complete the statement of a

theorem. Using only your theorem, show that a linear function f(x) = ax+ by, where a and
b are constants, is integrable on R =[0,2] x [0, 3].

Theorem. Let R C R? be a rectangle and f : R — R be a bounded function. Then
f is integrable on R if and only if

There is a sequence of partitions P,, of R such that

U(f,Pn)—L(f,Pr) >0 asn— oo.

f is integrable in R means that the upper integral equals the lower integral

/ )iV = [ rwavee)



where

/ f(2)dV(z) = sup L(f,P), / fla)dV (x) = inf U(1,P)
R P R

where inf and sup of lower and upper sums are taken over partitions of R. If f is integrable
on R, then its integral is the common value

[ swavia = [ FECCE [ i@ave)

Let P, = {S;} be the partition of R into 6n2 many % x L+ squares S;. f is C! since it is

n

linear and its gradient df (z,y) = (a,b) has norm L = v/a? + b. By Problem 4a above,

where (z,y) € S; is any point and (z;,y;) is in the center of S;. It follows that

iam SZ‘
M= sup fla.y) < flzay)+ sup [f(zy) — Flany)] < e w) + Ldf()
(z,y)€S; (z,y)€S;
i S;
mi= inf o) > Sy +ind[Fy) - f)] 2 ) - L diam(5:) a;”( ).

Since the diameter of .S; is %, it follows that

n
Summing over all squares of the partition,
6n?
2L
i=1

as n — 0o. Thus f is integrable on R by the theorem.

. Let D C R? be the region in the first quadrant bounded by the curves u+v =3, u+v =5,
20 = u, and 2v = u + 4. Find an open set U C R?, a one-to-one function ¢ € C1(U,R?)
such that det(de(x,y)) # 0 for all (z,y) € U and an aligned rectangle R C U such that

D = p(R). By changing variables using ¢, find the integral / udV (u,v).

D
Ay
. L2v=u+4
.t
. L 2v=u
—" \’
-7 o
IR u+v=>5
. .
u+v=23 u
Y

Use the boundary curves to make the transformation

r=u-+v

y=—-u+2



Then R = {(z,y) : 3 <z <5 and 0 <y <4}. Solving for (u,v) in terms of (z,y) we find

u T %m - %y
= (p =
v Yy 3T+ 3Y
The differential
2 1
dp = 3 3
11
3 3

whose determinant is é so dp(x,y) is invertible. Thus ¢ is one to one because the linear

map is invertible, C! since it’s linear, with nonsingular Jacobian in the whole plane U = R?
such that D = ¢(R).

Because also the function f(u,v) = w is continuous on U, we satisfy conditions for the
change of variables formula and iterated integrals

/DudV(u,v):/ f(u,v) dV (u,v)

P(R)

- /R F (o)) | det dip(ze, )| AV (. )
:/R<§x—;y) AV (.y)
L

1 5

94
= — [23@ — y] dx
= y=0

27 Jo—a 2
1 5
=— [8x — 8] dx
27 r=3
[ o]
= — |4z° — 8z
27 =3
1 16
=—[4-16 -8-2| = —.
27[ } 9



T T +siny
7. (a) Let f: R?> — R? be defined by f = . Determine whether f is

y V1ita?+y?
uniformly continuous on R? and prove your result.

fis UNIFORMLY CONTINUOUS on R2. Choose € > 0. Let § =
R? such that [|(z1,y1) — (z2,2)|| < J, we find using ||(u,v)
sinv| < |u — v| for all u,v,

— ol

. Choose (z1,41), (z2,y2) €
< |u| 4+ |v| and |sinu —

| f(z1, y1)—f(x2,92)|| < |(z1 +siny;) — (x2 +sinys)| + ‘\/1 + 23 +yi - \/1 + a3+ 3

(1 + 2% +y7) — (1 + 23 +3)|
Vita?+yi+ 1+ 22 +y3
|27 — 23| + lyi — 3]
Vita?+yi+/1+23 +y3
|1 4+ z2| |21 — 22| + |y1 + v2| [11 — ¥2
Vitai+yi+/1+23+43
(Jz1] + |z2]) |21 — 2| + (lya] + [y2]) [y1 — w2l
Vitai+yf + V1425 +y3

< w1 — @of + [sinyr — sinys| +

<oy — 2|+ |y1 — y2| +

=|z1 — 22| + |y1 — y2| +

<y — 2| + |y — y2| +

|1] |2
< |1+ |21 — 22
( V1+a?+yi o 1+ a3 + 2

|y1] |3y2]
+ 1+ + ly1 — 2.
( Vitai+yd  J1+a3+y3

Thus using [u| < [|(u, v)[| and |v] < |[(u, v)[],

I f(z1,91) — fz2,y2)| < 3lz1 — x2| + 3lyr — y2|
< 6[[(21 —y1, 72 — y2) ||
=6(z1,22) — (y1,92)[| <66 =e.

Hence, f is uniformly continuous on R2. Indeed, it is Lipschitz on R?2.

(b) Let f: R4 — R be continuous. Show that E = {x € R®: f(z) > 0} is open.

To show that E is open, we have to show that for every z € E there is § > 0 such that
the whole open ball Bs(z) C E. Choose z € E. Then f(z) > 0. By continuity, we
argue that f(z) > 0 for every z close to z. Indeed, let € = f(z) > 0. By continuity of
f, there is a § > 0 such that |f(z) — f(2)| < € whenever ||z — z|| < §. I claim that if
x € Bs(z) then f(z) > 0so x € E. In other words, Bs(z) C E so E is open.

To see the claim, suppose z € Bs(z). Hence ||z — z|| < §. Thus

[(@) = 1(2) = (f(z) = [(2)) = [(2) = |[(2) = f(2)| > f(2) —e = f(2) = f(2) = 0.



8. Define: E C R" is a Jordan Region. Show that E is a Jordan region, where

E={(z,y) eR?*: (x=0and0<y<1)or (y=0and 0<x <1) }.

A set E € R" is a Jordan Region if the characteristic function

1, ifzeE;
X0, ifedE.

is integrable in any aligned rectangle R C R™ such that £ C R. Integrable in R means that
the upper integral equals the lower integral

/ el) V() = /RXE(:@ 4V (z)

where

[ xe@ave =swieeP) [ e avis) =it Uie.?)
R P R

where inf and sup of lower and upper sums are taken over partitions of R.

The set E is “L” shaped. We show that the characteristic function g is integrable in
R =10,1] x [0,1]. We use the theorem in Problem 5 above as the criterion of integrability.
Let the partition P, = {S;} divide R into n? many % X % subsquares S;. Then M; =
sup{xg(z,y) : (x,y) € S;} = 1 for all the squares S; along the x = 0 and y = 0 edges of
the square. There are 2n — 1 such subsquares S; that touch E. All other M; = 0. Also
m; = inf{xg(z,y) : (x,y) € S;} =0 for all the squares S; . Thus

n2

U(xe, Pn) — L(xz, Pn) = Y _(M; —mi)V(S;)

i=1

=Y 00,

SJWE#@
2n—1
n

as n — oo. Hence, xg is integrable so E is a Jordan Region. Because U(xg,Pn) —
L(xg,Pn) = U(xg, Pn), this shows that 0 < V(E) < U(xg,Pn) 2 0asn —ocoso Fisa
Jordan Region of volume zero.



