Math 3220 § 2.	Final Exam	Nam	e:	
Treibergs a		May	1, 2018	
This is an open book test.	You may use the textbook, your notes,		1	/21
homework papers and han	douts. No other books, papers, calculators,		2	/21
tablets, laptops, phones or	other messaging devices are permitted.		3	/21
Give complete solutions. E	e clear about your logic and definitions		4	/21
and justify any theorems t	hat you use. There are [150] total points.		5.	/22
Do SEVEN of eight pro	oblems. If you do more than seven problem	ns,	6.	/22
only the first seven will be	graded. Cross out the problems you don't		7.	/22
wish to be graded.		_	8.	/22
		r -	Total	/135

1. [21] Determine whether the following function $f: \mathbf{R}^2 \to \mathbf{R}$ is differentiable at (0, 0).

$$f(x,y) = \begin{cases} \frac{y \sin(x^2 + y^2)}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0); \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

Differentiable at (0,0):
 O Not differentiable at (0,0):
 O

Math 3220 § 2. Treibergs	Final Exam	Name: May 1, 2018
Your grades will be posted at m	y office according to	Secret Id. :

2. (a) [4] Let $A \subseteq \mathbf{R}^d$. Define: A is a compact set.

(b) [6] Let $E = \{(x, y) \in \mathbf{R}^2 : x^2 + 2y^2 = 1\}$. Is E compact? Why? $\boxed{E \text{ is compact: } \bigcirc} \boxed{E \text{ is not compact: } \bigcirc}$

(c) [11] For the set E in part (b.), is there a point $x \in E$ closest to (0,0)? Why?

Math 3220 § 2.	Final Exam	Name:
Treibergs		May 1, 2018

$$\begin{array}{l} f(x,y,z,u,v)=x+2y+3u-zv,\\ 3. \ \mbox{Let} \qquad g(x,y,z,u,v)=xy+zu+v,\\ S=\{(x,y,z,u,v)\in {\bf R}^5: f(x,y,z,u,v)=2 \ \mbox{and} \ g(x,y,z,u,v)=19\}. \end{array}$$

(a) [4] Define: S is a regular parameterized p-dimensional surface.

(b) [17] Show that S is a regular parameterized p-dimensional surface. Is $S \neq \emptyset$? What is p?

Math 3220 § 2.	Final Exam	Name:
Treibergs		May 1, 2018

- 4. Determine whether the statement is true or false. If true give a brief reason. If false, give a counterexample.
 - (a) [7] **Statement.** Let $K \subseteq \mathbf{R}^d$ be a compact convex set with nonempty interior and $f \in \mathcal{C}^1(K)$. Then there is $L < \infty$ such that $|f(x) f(y)| \leq L|x y|$ for all $x, y \in K$. TRUE: \bigcirc FALSE: \bigcirc

(b) [7] **Statement.** Let $E \subset \mathbf{R}^2$ consist of countably infinitely many distinct points $E = \bigcup_{i=1}^{\infty} \{x_i\}$. Then E is not a Jordan region. TRUE: \bigcirc FALSE: \bigcirc

(c) [7] **Statement.** Let $R = [0,1]^2$, $f, f_n : R \to \mathbf{R}$ be integrable functions such that $f(x) = \lim_{n \to \infty} f_n(x)$ for all $x \in R$. Then $\int_R f(x) \, dV(x) = \lim_{n \to \infty} \int_R f_n(x) \, dV(x)$. TRUE: \bigcirc FALSE: \bigcirc

Math 3220 § 2.	Final Exam	Name:
Treibergs		May 1, 2018

5. Let $R \subseteq \mathbf{R}^d$ be an be an aligned rectangle in the in the plane and f be a real valued function on R.

(a) [6] Define both: f is *integrable* on R and $\int_R f(\mathbf{x}) dV(\mathbf{x})$.

(b) [6] Complete the statement of a theorem.

Theorem. Let $R \subset \mathbf{R}^d$ be a rectangle and $f : R \to \mathbf{R}$ be a bounded function. Then f is *integrable* on R if and only if

(c) [10] Using only the theorem in (b), show that a linear function f(x) = ax + by, where a and b are constants, is integrable on $R = [0, 2] \times [0, 3]$.

Math 3220 § 2.	Final Exam	Name:
Treibergs		May 1, 2018

- 6. Let $D \subseteq \mathbf{R}^2$ be the region in the first quadrant bounded by the curves u + v = 3, u + v = 5, 2v = u, and 2v = u + 4.
 - (a) [11] Find an open set $U \subseteq \mathbf{R}^2$, a one-to-one function $\varphi \in \mathcal{C}^1(U, \mathbf{R}^2)$ such that $\det(\mathrm{d}\varphi(x, y)) \neq 0$ for all $(x, y) \in U$ and an aligned rectangle $R \subseteq U$ such that $D = \varphi(R)$.

(b) [11] By changing variables using (a), find the integral $\int_D u \, dV(u, v)$.

Math 3220 § 2. Treibergs	Final Exam	Name: May 1, 2018
7. (a) [11] Let	$f: \mathbf{R}^2 \to \mathbf{R}^2$ be defined by $f\begin{pmatrix} x\\ y \end{pmatrix} =$	$\begin{pmatrix} x + \sin y \\ \sqrt{1 + x^2 + y^2} \end{pmatrix}.$
Determi	ne whether f is uniformly continuous of	on \mathbf{R}^2 and prove your result.
	UNIFORMLY CONTINUOUS:	NOT UNIFORMLY CONTINUOUS: O

(b) [11] Let $f : \mathbf{R}^d \to \mathbf{R}$ be continuous. Define what it means for a set E to be open. Using just the definition show that $E = \{x \in \mathbf{R}^d : f(x) > 0\}$ is open.

Math 3220 \S 2.	Final Exam	Name:
Treibergs		May 1, 2018

8. (a) [3] Define: $E \subseteq \mathbf{R}^n$ is a Jordan Region.

(b) [18] Show that E is a Jordan region, where

$$E = \{(x, y) \in \mathbf{R}^2 : (x = 0 \text{ and } 0 \le y \le 1) \text{ or } (y = 0 \text{ and } 0 \le x \le 1) \}.$$