
Math 3220 § 2.
Treibergs

Second Midterm Exam Name:
February 27, 2013

(1.) Let f : R2 → R be a function and (a, b) ∈ R2 a point. State the definition: f is a continuous
at (a, b). Determine whether f is continuous at (0, 0) and prove your answer, where

f(x, y) =


(x− y)3

x2 + y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

Definition. f : R2 → R is continuous at (a, b) ∈ R2 if for every ε > 0 there is a δ > 0 such
that

‖f(x, y)− f(a, b)‖ < ε whenever (x, y) ∈ R2 and ‖(x, y)− (a, b)‖ < δ.

We observe that the function is cubic over quadratic, so it should tend to zero at the origin.
Indeed, since

|x− y| ≤ |x|+ |y| ≤ 2
√
x2 + y2 = 2‖(x, y)‖

we have for (x, y) 6= (0, 0),

|f(x, y)− f(0, 0)| =
∣∣∣∣ (x− y)3

x2 + y2

∣∣∣∣ ≤ 8‖(x, y)‖3

‖(x, y)‖2
≤ 8‖(x, y)‖.

Thus, if we choose ε > 0 and take δ = ε/8, then for any (x, y) ∈ R2 such that ‖(x, y)− (0, 0)‖ < δ
we have either (x, y) = (0, 0) in which case |f(x, y) − f(0, 0)| = 0 < ε or (x, y) 6= (0, 0) in which
case

|f(x, y)− f(0, 0)| ≤ 8 ‖(x, y)‖ = 8 ‖(x, y)− (0, 0)‖ < 8δ = ε.

Hence, f is continuous at (0, 0).

(2.) Let f : Rp → R be continuous and a < b. Using just the definitions of continuity and
openness, show that E is open, where

E = {x ∈ Rp : a < f(x) < b}.

To show E is open we must show that for every x ∈ E there is a δ > 0 such that the whole
open ball Bδ(x) ⊂ E. Choose x ∈ E. Thus a < f(x) < b. Since the interval is open, there
is an ε > 0 such that

(
f(x) − ε, f(x) + ε

)
⊂ (a, b). By continuity, there is a δ > 0 such that

|f(z)− f(x)| < ε whenever z ∈ Rp and ‖z − x‖ < δ. But this implies that if z ∈ Bδ(x), then

f(z) ∈
(
f(x)− ε, f(x) + ε

)
⊂ (a, b).

In other words, Bδ(x) ⊂ E. Hence, E is open.
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(3.) Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

1. Statement Suppose K ⊂ Rq is compact and f : Rp → Rq is continuous. Then f−1(K) is
compact.

FALSE. For example, let f : R1 → R1 be given by f(x) = ex. Then K = [−1, 1] is compact
but f−1(K) = (−∞, 0] is not compact (because it is unbounded.)

2. Statement. Let E ⊂ R2 be a connected set in the plane. Then the boundary ∂E is
connected.

FALSE. For example let E = B2(0) − B1(0) be the open annulus whose boundary ∂E =
{(x, y) ∈ R2 : x2 + y2 = 1} ∪ {(x, y) ∈ R2 : x2 + y2 = 4} is two disconnected circles.

3. Statement. Suppose that K ⊂ Rp is compact and fn, f : K → Rq. If the {fn} converges
to f pointwise on K then it also converges uniformly on K.

FALSE. Let K = [0, 1] ⊂ R1 and fn : K → R1 be given by fn(x) = xn. Then {fn} converges
pointwise to f(x) = 0 if 0 ≤ x < 1 and f(1) = 1. The convergence is not uniform because
if it were, then the uniform limit f would have to be continuous because all fn are.

(4.) Let D ⊂ Rp and f, fn : D → Rq be transformations. State the definition: {fn} converges
uniformly to f on D. Suppose that all of the transformations satisfy the same Lipschitz condition:
there is a constant c ∈ R such that

‖fn(x)− fn(y)‖ ≤ c‖x− y‖ whenever n ∈ N and x, y ∈ D.

Show that if fn → f uniformly on D, then f also satisfies the Lipschitz condition.
Definition. Let f, fn : D → Rq. {fn} converges to f uniformly if for every ε > 0 there is a

N ∈ R such that
‖fn(x)− f(x)‖ < ε whenever x ∈ D and n > N .

Let f be the uniform limit of {fn} on D. We show that f satisfies the Lipschitz condition
with the same c. To estimate the difference, choose any x, y ∈ D. Choose ε > 0. By uniform
convergence, there is a N ∈ R such that ‖fn(z) − f(z)‖ < ε whenever z ∈ D and n > N . Take
any m ∈ N such that m > N . By the triangle inequality, the Lipschitz condition for fm and
taking z = x and z = y we obtain

‖f(x)− f(y)‖ = ‖f(x)− fm(x) + fm(x)− fm(y) + fm(y)− f(y)‖
≤ ‖f(x)− fm(x)‖+ ‖fm(x)− fm(y)‖+ ‖fm(y)− f(y)‖
< ε+ c‖x− y‖+ ε.

Since ε may be any positive number, it follows that

‖f(x)− f(y)‖ ≤ c‖x− y‖.

Since x, y were arbitrary, this inequality holds whenever x, y ∈ D.
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(5.) Let f : Rp → R be a real function. State the definition: f has a partial derivative
∂f

∂xj
(a)

with respect to the jth variable at a ∈ Rp. Determine whether f has a partial derivative with
respect to y at (0, 0), where

f(x, y) =


x4 + y3

x2 + y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

Definition. f : Rp → R has a partial derivative with respect to the jth variable at a ∈ Rp if
the following limit exists

∂f

∂xj
(a) = lim

h→0

f(a1, . . . , aj−1, aj + h, aj+1, . . . , an)− f(a1, . . . , aj−1, aj , aj+1, . . . , an)
h

.

For the given function, if y 6= 0 then

f(0, y) =
04 + y3

02 + y2
= y,

and if y = 0, f(0, 0) = 0. In both cases f(0, y) = y. It follows that

∂f

∂y

(
0, 0) = lim

h→0

f(0, h)− f(0, 0)
h

= lim
h→0

h− 0
h

= 1.

Alternatively, the partial derivative is defined if the one variable derivative exists:

∂f

∂xj
(a) =

d

dt

∣∣∣∣
t=aj

f(a1, . . . , aj−1, t, aj+1, . . . , an).

So for this function
∂f

∂y
(0, 0) =

d

dt

∣∣∣∣
t=0

f(0, t) =
d

dt

∣∣∣∣
t=0

t = 1.
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