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September 5, 2007

1. Using just the definition of convergence in R2, show that the limit exists: limn→∞

(
sin n√

n
, 1

2n

)
.

Proof. First, observe that each component converges to zero so set x = (0, 0). Using sin2 n ≤ 1
and 22n ≥ n for all n ∈ N we get

‖xn − x‖ =
(

sin2 n
n + 1

22n

) 1
2 ≤

(
1
n + 1

n

) 1
2 =

√
2
n . (1)

To see that xn → x as n → ∞, choose ε > 0. Let N = 2
ε2 . For any n > N , by (1),

‖xn − x‖ ≤
√

2
n <

√
2
N = ε thus convergence is proved.

2. Let {xk} and {yk} be sequences in Rn and x and y be points in Rn. Suppose xk → x, and
yk → y as k →∞. Show ‖xk‖yk → ‖x‖y as k →∞.

Proof. The first argument uses the Computation Theorem from the chapter: Since xk → x as
k → ∞ in Rn, then the norm ‖xk‖ → ‖x‖ as k → ∞. Also, whenever there is a sequence of
constants ck → c and vectors in yk → y as k → ∞ in Rn then ckyk → cy as k → ∞. Hence,
taking ck = ‖xk‖ yields the result.

Many arguments are acceptable. The other extreme is just to use the definition.

Proof. First, the convergence xk → x as k → ∞ implies that ‖xk‖ is bounded. Choose ε = 1.
There is N1 so that if k > N1 then ‖xk − x‖ < 1. For these k,

‖xk‖ = ‖xk − x + x‖ ≤ ‖xk − x‖+ ‖x‖ < 1 + ‖x‖.

Adding and subtracting the intermediate term as for product problems and using boundedness
and the reverse triangle inequality,

‖‖xk‖yk − ‖x‖y‖ = ‖‖xk‖yk − ‖xk‖y + ‖xk‖y − ‖x‖y‖
= ‖‖xk‖ (yk − y) + (‖xk‖ − ‖x‖) y‖
≤ ‖‖xk‖ (yk − y)‖+ ‖(‖xk‖ − ‖x‖) y‖
= ‖xk‖ ‖yk − y‖+

∣∣‖xk‖ − ‖x‖
∣∣‖y‖

≤
(
1 + ‖x‖

)
‖yk − y‖+ ‖xk − x‖‖y‖.

Using the convergence xk → x and yk → y as k → ∞ for any ε > 0 there is an N2 so that if
k > N2, ‖xk − x‖ < ε

1+‖x‖+‖y‖ . Also there is an N3 so that if k > N2, ‖yk − y‖ < ε
1+‖x‖+‖y‖ .

Put N = max{N1, N2, N3}. Now for any k > N ,

‖‖xk‖yk − ‖x‖y‖ <
(
1+‖x‖

)
ε

1+‖x‖+‖y‖ + ‖y‖ε
1+‖x‖+‖y‖ = ε.

3. State the definition: (X, δ) is a metric space. Let ‖u−v‖ be the metric for Rn as usual. Show
that δ̂ is another metric, where δ̂(u,v) = ‖u−v‖

1+‖u−v‖ .

A metric space is a set X and a function δ : X ×X → R such that for all x,y, z ∈ X all three
conditions hold:

a. δ(x,y) = δ(y,x)

b. δ(x,y) ≥ 0 and δ(x,y) = 0 if and only if x = y.
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c. δ(x, z) ≤ δ(x,y) + δ(y, z).

Proof. We check that all three properties hold for δ̂. The first condition follows from ‖x− y‖ =
‖y − x‖: δ̂(x,y) = ‖x−y‖

1+‖x−y‖ = ‖y−x‖
1+‖y−x‖ = δ̂(y − x).

The function f(s) = s
1+s is stictly increasing on 0 ≤ s < ∞. The second condition follows

for s ≥ 0 from f(s) ≥ 0 and f(s) = 0 if and only if s = 0, and properties of ‖x − y‖. Let
s = ‖x − y‖ ≥ 0 by positivity of norm. Then δ̂(x,y) = f(s) ≥ 0 and if 0 = δ̂(x,y) = f(s) then
s = ‖x− y‖ = 0 which implies x = y by positive definiteness.

By the usual triangle inequality, ‖x − z‖ ≤ ‖x − y‖ + ‖y − z‖ so by monotonicity of f ,
δ̂(x, z) = f(‖x− z‖) ≤ f(‖x− y‖+ ‖y − z‖). Hence

δ̂(x, z) ≤ ‖x−y‖+‖y−z‖
1+‖x−y‖+‖y−z‖ = ‖x−y‖

1+‖x−y‖+‖y−z‖ + ‖y−z‖
1+‖vx−y‖+‖y−z‖

≤ ‖x−y‖
1+‖x−y‖ + ‖y−z‖

1+‖y−z‖ = δ̂(x,y) + δ̂(y, z).

4. Let {xk} be a sequence in Rn and M <∞, r < 1 be constants such that the norm ‖xk‖ ≤Mrk

for all k. Show that the infinite sum
∑∞

k=1 xk converges.

Proof. The infinte sum converges provided that the sequence of partial sums converge. Let
Sn =

∑n
k=1 xk. In Rn, since a Cauchy sequence is convergent, it suffices to show that {Sn}

is a Cauchy sequence. Choose ε > 0. Let N = log(ε(1 − r)/M)/ log r. Suppose that both
n,m > N . If n = m then ‖Sn − Sm‖ = 0 < ε. Hence, after swapping if necessary, we may
suppose n > m. Thus, using the triangle inequality with many terms, the hypothesis and the
formula for a geometric sum,

‖Sn − Sm‖ = ‖
∑n

k=1 xk −
∑m

k=1 xk‖ =
∥∥∑n

k=m+1 xk

∥∥ ≤∑n
k=m+1 ‖xk‖

≤
∑n

k=m+1Mrk =
Mrm+1(1−rn−m)

1−r < Mrm+1

1−r < MrN

1−r = ε.

5. Determine whether the following statements are true or false. If true, give a proof. If false, give
a counterexample. For these problems, R2 is endowed with the usual real vector space structure.

a. The function u •̃v = u1v1 − u2v2 provides another inner-product for R2.

FALSE. The function •̃ is not positive definite. For u = (1, 3) we get u •̃u = 1 ·1−3 ·3 = −8
which should be positive for an inner-poduct.

b. The function |||u||| = |u1|+ 2|u2| provides another norm for R2.

TRUE. The function satisfies the three conditions:

It is positively multiplicative: for all u ∈ R2 and α ∈ R,
|||αu||| = |αu1|+ 2|αu2| = |α|(|u1|+ 2|u2|) = |α||||u|||.
It is positive definite: for all u ∈ R2, |||u||| = |u1| + 2|u2| ≥ 0 and |||u||| = 0 if and only if
|u1|+ 2|u2| = 0 if and only if |u1| = 0 and |u2| = 0 if and only if u = (u1, u2) = (0, 0).

It satisfies the triangle inequality: for all u,v ∈ R2, |||u + v||| = |u1 + v1| + 2|u2 + v2| ≤
|u1|+ |v1|+ 2|u2|+ 2|v2| = (|u1|+ 2|u2|) + (|v1|+ 2|v2|) = |||u|||+ |||v|||

c. The function δ̃(u,v) = |u1 − v1|+ |u2 − v2|2 provides another metric for R2.

FALSE. The triangle inequality fails. For example if u = (1, 1), v = (3, 7) and w = (2, 4)
then δ̃(u,v) = 2 + 36 = 38, δ̃(u,w) = 1 + 9 = 10 and δ̃(w,v) = 1 + 9 = 10 and so
38 = δ̃(u,v) 6≤ δ̃(u,w) + δ̃(w,v) = 20.
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