Math 3210 § 2. First Midterm Exam Name: Golutions
Treibergs February 2, 2017

1. Let x > —1. Prove that for every integer n > 0,

Pn): (1+z)" >1+nz.

We use induction starting at n = 0 which works just as well as starting from n = 1. Note
that > —1 implies that 1 + 2 > 0. Hence in the base case, n =0, (1 + ) =1 =1+ 0x
so P(0) holds.

For the induction case, assume that for some n > 0, P(n) holds to show P(n + 1) holds.
The induction hypothesis P(n) says

1+2)">1+nz.

But since (1 4+ ) > 0, we preserve the order when we multiply the inequality. This gives
the induction step

(z+1)" =@+ D)+)">0+2)14+nz)=1+n+Dz+nz®>>1+n+ 1z
because nz? > 0.

2. Recall the azioms of a commutative ring (R,+,X). For any z,y,z € R,

[Al.] (Commutativity of Addition) r+y=y-+a.

[A2.] (Associativity of Addition) x4+ (y+z2)=(z+vy)+=

[A3] (Additive Identity.) (30€R)(VtE R) 0+t =t

[A4] (Additive Inverse) -z eR)z+(—z)=0.

[M1.] (Commutativity of Multiplication) zy = yz.

[M2.] (Associativity of Multiplication) z(yz) = (xy)z.

[M3.] (Multiplicative Identity.) (31€R)1#0and (Vte R) 1t =t.
[D.] (Distributivity) x(y+ 2) = zy + zz.

Using only the axioms of a commutative ring, show that for any a,b € R, then the equation
a+x=»0
has a unique solution © = (—a) + b. Justify every step of your argument using just the

axioms listed here.

First we show x = (—a) + b solves the equation.

a+z=a+ ((—a)+0b)) Substitute .
=(a+(—a))+b Associativity of addition, A2.
=0+b Additive inverse A4.
=b. Additive identity A3.



Second we argue the solution is unique. Suppose = and z were two solutions. Then both
satisfy the equation

(
(
(

at+x=0b
a+z=5> Substitute solutions x and z.
at+r=a+x Both equal b.

—a)+ (a+z)=(—a)+ (a+2) Pre-add —a (which exists by A4) to both sides.
(—a)+a)+z=((—a)+a)+ 2z Associativity of addition A2.
a+(—a))+2x=(a+ (—a)) +z Commutativity of addition Al.
O+z=0+=% Additive inverse A4.
r=z Additive identity A3.

Thus any two solutions are the same.

Another argument may be given. We start from the equation and deduce the value of the
unknown.

at+z=> Given.
(—a) +b Pre-add —a (which exists by A4) to both sides.
(—a) +b Associativity of addition, A2.
(a+ (—a))+z=(—a)+b Commutitvity of addition, Al.
(—a)+b Additive inverse, A4.
(—a) +b Additive identity, A3.

Thus we deduce that the equation may be solved by the number z = (—a) + b. This
argument says more. No matter which solution z was used, the argument showed that all
solutions are the same one and only solution & = (—a) + b. Hence the solution is unique.

. Determine whether the following statements are true or false. If true, give a proof. If false,

give

(a)

(b)

a counterexample.

If f : A— B then f(A\E) = f(A\f(E) for every subset E C A.

FALSE. Let A = B =R, E = [0,00), f(x) = 2% (which is not one-to-one), A\E =
(=00,0), f(A\E) = (0,00), f(A) = f(E) = [0,00) so f(A)\f(E) =0 # f(A\E).

Let f: X =Y. If f~Y(E) = X for some proper subset E of Y then f is not onto.
TRUE. If E C Y is a proper subset, it is not all of ¥ so there is yg € Y but yo ¢ E.
Since the range f(X) = E, no point of X maps to yo, so f is not onto.

Let f : X — Y be a function. Suppose that for every x1,x9 € X, f(z1) # f(z2)
implies ©1 # xo. Then f is one-to-one.
FALSE. The statement is true for every function. e.g., g(x) = 22 is not one-to-one

on R, but the hypothesis is true as can be seen by its contrapositive: x; = x5 implies
2t = g(w1) = g(a2) = 23.



4. Recall that the rational numbers are defined to be the set of equivalence classes Q = S/ ~
where S = {% ca,beZ, b# O} is the set of symbols (pairs of integers) and the symbols are

a ¢
equivalent if they represent the same fraction 374 iff ad = bc. We denote the equivalence

a

class, the “fraction,” {b} to distinguish it from a symbol from S. Multiplication, for example

is defined on equivalence classes by [%} . [f} = [

(a)

r

=[]

m T
Given fractions © = [—} LY = [ﬂ in Q, suppose we define the operation
n

mt — nr

roy = {} .
nt

Show that the definition of © is well defined: it does not depend on the choice of the

symbols representing the fractions.
m m , , ror , , .
Let — ~ — som'n=mn and 7 ~ n so 't = rt’. Then we claim that the formulae
n
m't —n'r’ mt—nr

~ . To see this, using m'n = mn’ and r't = rt’,
n't’ nt

are equivalent:

nt(m't’ —n'r") = tt'nm’ —nn'tr’ = tt'n'm — nn't'r = 0't'(mt — nr).

Thus m't' —n'r’ N mt — nr
n't’ nt
Define the subset P = b €EQ:p>0andq>0.,. An order is defined on Q by
q

z 2y iffyex e P. Show that with this “X,” the rationals Q satisfy the order axiom
O1: For all x,y € Q, either x <y ory < .

t— —mt
Let x = [@} LY = [C} Then xoy := [m nr] and youx := [nr m
n t nt nt

the numerators are negatives: —(mt — nr) = nr — mt so that by the order properties
of Z, one or the other is nonnegative (or both are zero). So if nt > 0, one or the other
rOyor yoxisin P. On the other hand, if nt < 0, we may choose an equivalent

} . Notice that

. -m -m m
representative r = [ . We have — ~ — because n(—m) = (—n)m. Now
n

- (—m)t — (—n)r (cn)r (W}
S

and yox =

(=n)t ] ! {
Now the denominator is positive (—n)¢ > 0 and the numerators are still negatives of
one another, so one of them has to be nonnegative, thus, again, x &y or y Sz is in P.

computing using the new x, xoy := [



5. Let E C R be a set of real numbers given by
E={zeR: (MeZ) >0 (<|z—¢|) }.

Find E and and prove your result.

E={zeR: (VMe€Z) (Br>0 (r<|z—¢|) }

= m U{(—oo,z—T]U[z—i—T,oo)}

CELT>0

= ﬂ{(—oo,z) U (z,oo)}

CEZ
=R\Z.

To prove it, we show that the complement E°¢ = Z.

To show “C,” choose x € E° to show z € Z.
E¢={zeR: (Ie€Z) (Nr>0) (r>]z-(|) }
Let (yp € Z correspond to x. Then x satisfies
(Vr>0) (7> |z — (o)

In other words, x = {p which is an integer, so x € Z.

To show “D,” choose x € Z to show x € E°. Take ( = x. Then for all 7 > 0 we have

7> | — ¢| = 0 so x satisfies the condition to be in E¢. Hence we have shown E¢ = Z so
E=R\Z.



