
Math 3210 § 2.
Treibergs

First Midterm Exam Name: Solutions
February 2, 2017

1. Let x > −1. Prove that for every integer n ≥ 0,

P(n) : (1 + x)n ≥ 1 + nx.

We use induction starting at n = 0 which works just as well as starting from n = 1. Note
that x > −1 implies that 1 + x > 0. Hence in the base case, n = 0, (1 + x)0 = 1 = 1 + 0x
so P(0) holds.

For the induction case, assume that for some n ≥ 0, P(n) holds to show P(n + 1) holds.
The induction hypothesis P (n) says

(1 + x)n ≥ 1 + nx.

But since (1 + x) > 0, we preserve the order when we multiply the inequality. This gives
the induction step

(x+ 1)n+1 = (x+ 1)(x+ 1)n ≥ (1 + x)(1 + nx) = 1 + (n+ 1)x+ nx2 ≥ 1 + (n+ 1)x

because nx2 ≥ 0.

2. Recall the axioms of a commutative ring (R,+, X). For any x, y, z ∈ R,

[A1.] (Commutativity of Addition) x+ y = y + x.

[A2.] (Associativity of Addition) x+ (y + z) = (x+ y) + z.

[A3.] (Additive Identity.) (∃ 0 ∈ R) (∀ t ∈ R) 0 + t = t.

[A4.] (Additive Inverse) (∃−x ∈ R) x+ (−x) = 0.

[M1.] (Commutativity of Multiplication) xy = yx.

[M2.] (Associativity of Multiplication) x(yz) = (xy)z.

[M3.] (Multiplicative Identity.) (∃ 1 ∈ R) 1 6= 0 and (∀ t ∈ R) 1t = t.

[D.] (Distributivity) x(y + z) = xy + xz.

Using only the axioms of a commutative ring, show that for any a, b ∈ R, then the equation

a+ x = b

has a unique solution x = (−a) + b. Justify every step of your argument using just the
axioms listed here.

First we show x = (−a) + b solves the equation.

a+ x = a+ ((−a) + b)) Substitute x.

= (a+ (−a)) + b Associativity of addition, A2.

= 0 + b Additive inverse A4.

= b. Additive identity A3.
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Second we argue the solution is unique. Suppose x and z were two solutions. Then both
satisfy the equation

a+ x = b

a+ z = b Substitute solutions x and z.

a+ x = a+ x Both equal b.

(−a) + (a+ x) = (−a) + (a+ z) Pre-add −a (which exists by A4) to both sides.

((−a) + a) + x = ((−a) + a) + z Associativity of addition A2.

(a+ (−a)) + x = (a+ (−a)) + z Commutativity of addition A1.

0 + x = 0 + z Additive inverse A4.

x = z Additive identity A3.

Thus any two solutions are the same.

Another argument may be given. We start from the equation and deduce the value of the
unknown.

a+ x = b Given.

(−a) + (a+ x) = (−a) + b Pre-add −a (which exists by A4) to both sides.

((−a) + a) + x = (−a) + b Associativity of addition, A2.

(a+ (−a)) + x = (−a) + b Commutitvity of addition, A1.

0 + x = (−a) + b Additive inverse, A4.

x = (−a) + b Additive identity, A3.

Thus we deduce that the equation may be solved by the number x = (−a) + b. This
argument says more. No matter which solution x was used, the argument showed that all
solutions are the same one and only solution x = (−a) + b. Hence the solution is unique.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) If f : A→ B then f(A\E) = f(A)\f(E) for every subset E ⊂ A.

FALSE. Let A = B = R, E = [0,∞), f(x) = x2 (which is not one-to-one), A\E =
(−∞, 0), f(A\E) = (0,∞), f(A) = f(E) = [0,∞) so f(A)\f(E) = ∅ 6= f(A\E).

(b) Let f : X → Y . If f−1(E) = X for some proper subset E of Y then f is not onto.

TRUE. If E ⊂ Y is a proper subset, it is not all of Y so there is y0 ∈ Y but y0 /∈ E.
Since the range f(X) = E, no point of X maps to y0, so f is not onto.

(c) Let f : X → Y be a function. Suppose that for every x1, x2 ∈ X, f(x1) 6= f(x2)
implies x1 6= x2. Then f is one-to-one.

FALSE. The statement is true for every function. e.g., g(x) = x2 is not one-to-one
on R, but the hypothesis is true as can be seen by its contrapositive: x1 = x2 implies
x21 = g(x1) = g(x2) = x22.
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4. Recall that the rational numbers are defined to be the set of equivalence classes Q = S/ ∼
where S =

{a
b

: a, b ∈ Z, b 6= 0
}

is the set of symbols (pairs of integers) and the symbols are

equivalent if they represent the same fraction
a

b
∼ c

d
iff ad = bc. We denote the equivalence

class, the “fraction,”
[a
b

]
to distinguish it from a symbol from S. Multiplication, for example

is defined on equivalence classes by
[m
n

]
·
[r
t

]
=

[
(mr)

(nt)

]
.

(a) Given fractions x =
[m
n

]
, y =

[r
t

]
in Q, suppose we define the operation

x	 y :=

[
mt− nr
nt

]
.

Show that the definition of 	 is well defined: it does not depend on the choice of the
symbols representing the fractions.

Let
m′

n′
∼ m

n
so m′n = mn′ and

r′

t′
∼ r

t
so r′t = rt′. Then we claim that the formulae

are equivalent:
m′t′ − n′r′

n′t′
∼ mt− nr

nt
. To see this, using m′n = mn′ and r′t = rt′,

nt(m′t′ − n′r′) = tt′nm′ − nn′tr′ = tt′n′m− nn′t′r = n′t′(mt− nr).

Thus
m′t′ − n′r′

n′t′
∼ mt− nr

nt
.

(b) Define the subset P =

{[
p

q

]
∈ Q : p ≥ 0 and q > 0.

}
. An order is defined on Q by

x � y iff y 	 x ∈ P. Show that with this “�,” the rationals Q satisfy the order axiom
O1: For all x, y ∈ Q, either x � y or y � x.

Let x =
[m
n

]
, y =

[r
t

]
. Then x	y :=

[
mt− nr
nt

]
and y	x :=

[
nr −mt
nt

]
. Notice that

the numerators are negatives: −(mt− nr) = nr −mt so that by the order properties
of Z, one or the other is nonnegative (or both are zero). So if nt > 0, one or the other
x 	 y or y 	 x is in P. On the other hand, if nt < 0, we may choose an equivalent

representative x =

[
−m
−n

]
. We have

−m
−n

∼ m

n
because n(−m) = (−n)m. Now

computing using the new x, x	y :=

[
(−m)t− (−n)r

(−n)t

]
and y	x :=

[
(−n)r − (−m)t

(−n)t

]
.

Now the denominator is positive (−n)t > 0 and the numerators are still negatives of
one another, so one of them has to be nonnegative, thus, again, x	 y or y	 x is in P.
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5. Let E ⊂ R be a set of real numbers given by

E = {x ∈ R : (∀ζ ∈ Z) (∃τ > 0) (τ ≤ |x− ζ|) } .

Find E and and prove your result.

E = {x ∈ R : (∀ζ ∈ Z) (∃τ > 0) (τ ≤ |x− ζ|) }

=
⋂
ζ∈Z

⋃
τ>0

{
(−∞, z − τ ] ∪ [z + τ,∞)

}
=
⋂
ζ∈Z

{
(−∞, z) ∪ (z,∞)

}
= R\Z.

To prove it, we show that the complement Ec = Z.

To show “⊂,” choose x ∈ Ec to show x ∈ Z.

Ec = {x ∈ R : (∃ζ ∈ Z) (∀τ > 0) (τ > |x− ζ|) }

Let ζ0 ∈ Z correspond to x. Then x satisfies

(∀τ > 0) (τ > |x− ζ0|).

In other words, x = ζ0 which is an integer, so x ∈ Z.

To show “⊃,” choose x ∈ Z to show x ∈ Ec. Take ζ = x. Then for all τ > 0 we have
τ > |x − ζ| = 0 so x satisfies the condition to be in Ec. Hence we have shown Ec = Z so
E = R\Z.
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