Math 3210 § 1. First Midterm Exam Name:__Golutions
Treibergs ar February 4, 2015

1. The Fibonacci Sequence is defined recursively. Prove that f, < @™ for all n € N, where

1+5
SR

fi=1, fa=1, and fna1 = fn+ fao1 for all n > 2.

We prove the statement using mathematical induction. For each n € N we have the
statement
an o« fn S (pn and fn—l S (pn—l.aa

We could have also used strong mathematical induction that assumes the truth of all pre-
vious statements as its hypothesis.

3+

Base Case. Whenn =2, fi=1<pand fo =1< ¢? = 5

Induction case. For any n > 2 we assume that P, is true. Thus we assume f,, < @™ which
is the second half of P, 1. To verify the other half, observe that by the recursion formula
and induction hypothesis,

ot =fat fac1 S @+ = (0 + D" =% " =T

where we used the fact that ¢ + 1 = ©?. Thus the induction step is complete.

Since both the base and inductions cases hold, P, is true for all n > 2, namely f, < ¢™ for
all n € N.



2. Recall the azioms of a field F' with operations + and x: For any z,y,z € F,

Al.  Commutativity of Addition r+y=y+z.

A2.  Associativity of Addition r+y+z)=(x+y)+2.
A8, Additive Identity
A/4. Additive Inverse
M1. Commutativity of Multiplication TY = YT.
M2.  Associativity of Multiplication z(yz) = (zy)z.

MS3.  Multiplicative Identity
My.  Multiplicative Inverse

D.  Distributivity

(30 F)(Vte F)0+t=t.
F—zeF)x+(—x)=0.

(GLEF) 140 and (Yt € F) It =1t.
Ifx#0 then 3z~ ' € F) a7 lz = 1.
x(y+2) =xy+xz.

Using only the azioms of a field, show that if a,b € F such that a # 0 and b # 0 then
al+b71 = (a+b)(a"tbY). Justify every step of your argument using just the axioms
lzsted here. [Hint: the first line of your proof must not be “a™' +b~1 = (a +b)(a=1b71).7]

at+bt=1-at+1.07! Multiplicative Identity M3.
a1+t Commutativity of Multiplication M1.
=a '(07) + b (a La) Since a, b # 0 use Multiplicative Inverses M4.
= (@ Hb+ (b e Ya Associativity of Multiplication M2.
=@ b+ (a v Ha Commutativity of Multiplication M1.
= (a~ 1b Db+ a) Distributivity D.
=(b+a)(a bt Commutativity of Multiplication MI.
=(a+b)(ab7h) Commutativity of Addition Al.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) STATEMENT. Let f : R — R be a function. If f is not one-to-one then f is not onto.
FALSE. The function f(x) = 2® — x is onto (its graph crosses every horizontal line)
but not one-to-one since f(0) =0 = f(1).

(b) STATEMENT. Let f: A — B be a function. Then f(E\F) = f(E)\f(F)
for all subsets E, F C A.

FALSE. Define A = {1,2}, B = {3}, F = {1}, F = {2} and f(1) = f(2) = 3. Then
E\F = E so f(E\F) = {3} which is not equal to f(E)\f(F) = {3}\{3} = 0.

(c) STATEMENT. (Vz e R)(Fy e R)(VzeR)(z+2z>y+2).

TRUE. Here is the proof: choose x € R. Let y = z — 1. Then for any z € R we have
T+z>r—-14+2=y+=z.



4. State the definition: The function f: A — B is one-to-one. Let f : A — B be a one-to-one
function. Show that E = f’l(f(E)) for all subsets E C A.
Assume that F C A is any subset. We wish to show first £ C f_l( f (E)) and second
ED [H(f(B)).
First choose # € E to show z € f~'(f(E)). = € E implies that f(z) € f(E) = S. But
from the meaning preimage this says € f~1(S) so we have that x € f~(f(E)).

Second choose x € f~1(f(E)) toshow z € E. x € f~!(f(E)) implies that y = f(z) € f(E)
by meaning of preimage. Now y € f(F) implies that there is z € F such that f(z) =y =
f(x). However we have assumed that f is one-to-one, which implies that © = z. Thus we
have shown that = z € F, completing the proof.

5. Let E C R be a nonempty subset which is bounded above. Define the least upper bound:
L=1lubE. Find L =1ub FE if it exists, and prove your answer where

E:{p: p,qENsuchthatp<2q}
q

The least upper bound of a set is a number L that is first, an upper bound: for every x € E
we have x < L. Second, L is least among upper bounds, or to put it another way, no smaller
number can be an upper bound: if M < L then there is z € E such that M < x.

We show that lub £ = 2. First we argue that L = 2 is an upper bound. Indeed, for any
P € F then p,q € N such that p < 2¢q. But this implies that d < 2,80 L =2 is an upper
1t()lound. K

Second, suppose that M < 2 is a smaller number. By the Archimedean Property, there is
q € N so that é < 2— M. Put p=2q— 1. Since p is an integer such that p = 2¢ —1 >

2-1—1=1 we have p € N. Since p = 2¢ — 1 < 2q we have that P € E. On the other hand,
q
p_ 2¢-—1 1

=2-->2-(2—-M)=M.
q q q

Thus we have shown that M cannot be a lower bound: there is P € E such that M < B. O
q q

An alternative argument might involve the density of rationals to provide a rational number
241 the interval (M,2).
q



