
Math 3210 § 3.
Treibergs

Second Midterm Exam Name: Solutions
October 8, 2014

1. Let {an} be a real sequence and L ∈ R. State the definition: an → L as n→∞. Find the

limit. Using just the definition, prove that your answer is correct. L = lim
n→∞

3n + sinn

2n + sinn
.

We say that an → L as n→∞ if for every ε > 0 there is an N ∈ R such that |an − L| < ε
whenever n > N .

We show that the limit is L =
3

2
. Choose ε > 0. Let N =

1

4ε
+

1

2
. For every n ∈ N

such that n > N , since n > N >
1

2
we have 2n > 1 but | sinn| ≤ 1 implies we also have

2n + sinn ≥ 2n− 1 > 0. Hence∣∣∣∣3n + sinn

2n + sinn
− 3

2

∣∣∣∣ =
|2(3n + sinn)− 3(2n + sinn)|

2|2n + sinn|

=
| − sinn|

2(2n + sinn)

≤ 1

2(2n− 1)

=
1

4n− 2

<
1

4N − 2
= ε.

2. Let E ⊂ R be a nonempty subset and f : E → R be a function. Define: S = inf
x∈E

f(x).

Find inf
x∈E

f(x) and prove your answer, where E = (0,∞) and f(x) =
1 + x

x
.

Definition of infimum: if f is not bounded below on E then inf
x∈E

f(x) = −∞. Otherwise,

the infimum is the greatest lower bound. First, S is a lower bound: (∀x ∈ E)(f(x) ≥ S)
and second, S is the greatest of lower bound: (∀b > S)(∃x ∈ E)(f(x) < b).

For this E and f we have S = 1. If x ∈ E then x > 0 and f(x) =
1 + x

x
= 1 +

1

x
> 1 + 0,

so S = 1 is a lower bound. Choose b > 1 then for x =
2

b− 1
> 0 so x ∈ E we have

f(x) =
1 + x

x
=

1 + 2
b−1

2
b−1

=
b− 1

2
+ 1 =

b + 1

2
<

b + b

2
= b.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: Let {an} and {bn} be real sequences such that an → a and bn → b as
n→∞. Assume an < bn for all n. Then a < b.

False. Let an = − 1
n and bn = 1

n . Then an < bn for all n but

lim
n→∞

an = lim
n→∞

−1

n
= 0 = lim

n→∞

1

n
= lim

n→∞
bn.
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(b) Statement: |x| ≥ |y| − |x− y| for all x, y ∈ R.

True. By the triangle inequality we have

|y| = |x + (y − x)| ≤ |x|+ |y − x|.

(c) Statement: Let {xn} be a real sequence. Suppose for every L ∈ R there is an n ∈ N
such that xn > L. Then lim

n→∞
xn =∞.

False. The given condition is for unboundedness above. The definition of lim
n→∞

xn =

∞ is: (∀L ∈ R)(∃N ∈ R)(∀n ∈ N)(n > N =⇒ xn > L).

Thus a counterexample is given by

xn =

{
n, if n is even;

0, if n is odd.

The condition holds: for every L ∈ R there is m ∈ N such that m > L by the
Archimidean Property, so n = 2m > L and xn = n > L since n is even, but the limit
is not infinite. For L > 0 it is not true that there is an N ∈ R such that xn > L for
all n > N because, no matter what N is, there are odd numbers n with n > N , such
that xn = 0 which is not greater than L.

4. Let {an} be a real sequence and a ∈ R. Suppose an → a as n→∞. Using just the definition
of limit (and not the Main Limit Theorem), show that cube sequence converges

(an)3 → a3 as n→∞.

Choose ε > 0. Since an → a, for ε′ = 1, there is an N1 ∈ R such that

|an − a| < ε′ = 1, whenever n > N1.

For such n we have by the triangle inequality

|an| = |a + (an − a)| ≤ |a|+ |an − a| < |a|+ ε′ = |a|+ 1.

Also since an → a, for ε′′ =
ε

3(|a|+ 1)2
there is N2 ∈ R such that

|an − a| < ε′′ =
ε

3(|a|+ 1)2
whenever n > N2.

Let N = max{N1, N2}. For any n ∈ N satisfying n > N , since n > N1 we have |an| ≤ |a|+1
and since also n > N2,

|a3n − a3| = |(an − a)(a2n + ana + a2)|
≤ |an − a|

(
|an|2 + |an| |a|+ |a|2

)
≤ |an − a| ·

(
(|a|+ 1)2 + (|a|+ 1)|a|+ |a|2

)
≤ |an − a| · 3(|a|+ 1)2

<
ε

3(|a|+ 1)2
· 3(|a|+ 1)2 = ε.
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5. Define a sequence recursively by a1 = 1 and an+1 = 1 − 1

2 + an
. Prove that the sequence

{an} converges. What is lim
n→∞

an? Why?

Computing the first several terms we find a1 = 1, a2 =
2

3
. a3 =

5

8
. a4 =

13

21
, which suggests

an is decreasing. We shall show that {an} is decreasing and bounded below. Hence, by the
Monotone Convergence Theorem, there is a ∈ R such that an → a as n→∞.

First we show that an > 0 for all n ∈ N so that {an} is bounded below by zero. Argue by
induction. Base case: the first term is defined a1 = 1 so it is greater than zero. Induction
case: assume for some n ∈ N that an > 0. Then

an+1 = 1− 1

2 + an
=

1 + an
2 + an

=
(+)

(+)
> 0

since both numerator and denominator are positive by the induction hypothesis. This
completes the argument that an > 0 for all n ∈ N.

Next we show that an is decreasing by induction. Base case: we have

a2 = 1− 1

2 + a1
= 1− 1

2 + 1
=

2

3
< 1 = a1

so that a2 − a1 < 0. Induction case: assume that for any n ∈ N we have an+1 − an < 0.
Then

an+2 − an+1 =

(
1− 1

2 + an+1

)
−
(

1− 1

2 + an

)
=
−(2 + an) + (2 + an+1)

(2 + an+1)(2 + an)

=
an+1 − an

(2 + an)(2 + an+1)

=
(−)

(+)(+)
< 0,

where we have used the induction hypothesis on the numerator and the positivity of an in
the denominator. This completes the argument that an is decreasing.

Finally, we compute a. By the Subsequences Theorem we see that an+1 → a as n → ∞.
Taking limits of both sides of the recursion equation yields by the Main Limit Theorem,

a = lim
n→∞

an+1 = lim
n→∞

(
1− 1

2 + an

)
= 1− 1

2 + a
.

Solve for a by cross multiplying a(2 + a) = (2 + a)− 1 so a2 + a− 1 = 0. By the quadratic
formula

a =
−1±

√
12 − 4 · 1 · (−1)

2
=
−1±

√
5

2
.

Since an > 0 for all n we have a = lim
n→∞

an ≥ 0 so only the positive root gives the limit

a = −1

2
+

√
5

2
= 0.61803.
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