Math 3210 § 2. First Midterm Exam Name: Golutions
Treibergs January 29, 2014

1. Let {xo,x1,x2,...} be a sequence defined recursively by xo = 1, x1 = 2, and for n € N,
Tpt1 = 3Tp — 2Tp—1. Prove that x, = 2" for every integer n > 0.
For n € N, let the statement

Pp= “z,=2"and z,_; =2""

We prove it for all n by induction.

Base case n = 1: We are given 21 = 2 = 2' and 2y = 1 = 2°, so P; is true.

Induction Case: Assume that for some n € N, P, is true to show that P, is also true. Thus
we are assuming x, = 2" and z,_; = 2"~ which says z(,41)_1 = 2(n+1)=1 o4 that the second
equation of P, 41 holds. Using the recursion and the induction hypothesis

Tpy1 =32y — 20,1 =3-2" —2.2"71 =3.9n _9n —9.9on — on+tl

so that the first equation of P,y is also true. thus the induction case is done.
Hence P,, holds for all n € N, so z,, = 2™ for all n € N.

2. Using only the axioms of a commutative ring, show that for every a,b € R, if a = a + b then
b = 0. Justify every step of your argument using just the axioms listed here. Use ONLY the
azioms listed and DO NOT SKIP STEPS.

Recall the axioms of a commutative ring (R, +, x). For any z,y,z € R,

Al. (Commutativity of Addition.) z+y =y + .

A2. (Associativity of Addition.) =+ (y + 2) = (x +y) + 2.

A3. (Additive Identity.) (30 € R) (Vt€ R) 0+t =t.

M1. (Commutativity of Multiplication.) zy = yx.

M2. (Associativity of Multiplication.) z(yz) = (zy)z.

M3.

(
(
(
A4. (Additive Inverse) (3—x € R) = + (—z) = 0.
(
(
(Multiplicative Identity.) (31 € R) 1 #0 and (V¢ € R) 1t =t¢.
(

D. (Distributivity) x(y + z) = 2y + z=z.

a=a+b Assumption.
a+(—a)=(a+b)+(—a) By A4 there is —a. Add to both sides.
a+(—a)=(b+a)+ (—a) By Al.
a+(—a)=b+ (a+ (—a)) By A2.

0=0b+0 By A4.

0=0+0b By Al.

0= By A3.



3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.
a. Statement:If f : A — B and A= f~1(B) then f is onto.

FALSE. Let A = {1}, B = {2,3}, f(1) = 2. Then f~!(B) = {1} = A but f is not onto
because 3 € B is not the value, 3 # f(x), of any z € A.

b. Statement:Let f: X — Y and A, B C X be subsets. If f(A)N f(B) # 0 then AN B # (.
FaLsE. Let X = {1,2}, Y = {3}, f(1) = f(2) =3, A= {1} and B = {2}. Then f(A)Nf(B) =
{31n{3} ={3} #0but AnB=10.

c. Statement:Suppose A, B C X. Then X\(AU B) = (X\A4) N (X\B).
TRUE. This is deMorgan’s formula. Using the deMorgan’s formula from logic,

r€X\(AUB) < ze€ X andz ¢ (AUB)

z€ X and ~ (z € (AUB))
xEXandw(xerrxeB)

z € X and (~ (z € A) and ~ (z € B))
z€X and (z ¢ Aand z ¢ B)
(reXandx ¢ A) and (x € X and x ¢ B)
(z € X\A) and (x € X\B)

z € (X\A)N(X\B).

1reree

4. Let (F,+, x) be a field with order relation “<.” How is x <y defined? Using properties of a
field and the order axioms, show that if x,y,z € F satisfy x <y and 0 < z then zz < yz.
Recall that “<” is a relation that satisfies the following axioms: for all xz,y,z € F,

O1. Either x <yory <z.

02. f x <yand y <z then z=y.
03. If x <y and y < z then z < 2.
O4. fx <ythenzx + 2 <y+z.
O5. If x <y and 0 < z then zz < yz.

x <y means r <y and x # y.

We assume = < y and 0 < z. By definition of “<,” this means ¢ < y and x # y and 0 < z
and 0 # z. Since x <y and 0 < z we have that xz < yz by O5.

Also we have 0 # z and we wish to show z # y implies xz # yz. By contraposition, this is
equivalent to showing zz = yz implies * = y. Since z # 0, by the multiplicative inverse in the
field, there is z~! such that z~ 1z = 1.

Tz =Yz Assumption.
2 a2 “L(y2) By M4 there is 2~ 1. Multiply both sides.
27 zz) = 27 (2y) By MI.
(z7'2)e = (z"12)y By M2.
le =1y By M4.
r=y By M3.

Hence we have shown that xz < yz and zz # yz. It follows that xz < yz as to be shown.



5. For e, § real, let E the given subset of the real numbers. Determine E. Prove that your set
equals the given E.

E={zeR: [(Ve>0) (z <¢)] and [(36 > 0) (-6 < z)]}

We can see what E is by replacing it with unions and intersections of intervals.

E= <ﬂ(oo,e)> N <U(5,oo)> = (—00,0] NR = (—00,0].

e>0 6>0

To prove E = (—00,0] we argue “C” and “D.”

To show (—00,0] C E, we choose x € (—00,0]. Hence z < 0. It follows that z < € for every
€ >0. Also, let 6 = —xz + 1. Since x < 0, § > 0. Also, =6 = x — 1 < z. Thus we have shown
there is a § > 0 so that —& < z. Both conditions defining E hold so z € E.

To show E C (—00,0] or « € E implies x € (—o0, 0] we argue the contrapositive: if x ¢ (—o0, 0]
then z ¢ E. But an arbitrary = ¢ (—o0,0] means that x > 0. But then let € = z > 0. Thus
there is € > 0 such that ~ (z < ¢€). In other words (Ve > 0) (z < ¢) is false. Thus one of the
conditions to be in F is violated. However, since both must hold for a point to be in F, it follows
that « ¢ F, as to be proved.

Thus we have shown both containments, so E = (—o00, 0].



