Math 3210 § 3. Final Exam Name:__Golutions
Treibergs December 16, 2009

1. Let f : R — R. Define: f is differentiable at a. Determine whether the given function is
differentiable at 0. Justify your answer.
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W’ lf xr # O,
flx) =
0, otherwise.

z)— f(a
Definition: f is differentiable at a if the following limit exists: f’(a) = lim M
rz—a r—a
For the given function, the limit does not exist at 0. To see this we show for two sequences

1
tending to zero, the difference quotient has different limits. Taking x,, = —,
n

flea) = $O) _ x L
n—0 T a2 + 22 \/x2 1+x2 |acn|\/1—|—x2 {1|\/1+12 \/1_’_%2
1
as n — 0o. On the other hand, for y, = ——,
n
f) = FO) L
Yn — 0 NET 1|\/1+12 \/1 12
as n — 0o. Since the left and right approaches have inconsistent limits, there is no limit so the
function is not differentiable at 0. O

2. Suppose f : [0,27] — R is a continuous function and that f(q) =0 for every rational number
q € 10,27] N Q. Show that f(x) =0 for all x € [0, 27].
Fix an arbitrary x € [0, 27]. We show for every € > 0, we have |f(z)| < ¢, thus f(z) = 0.
Choose € > 0. By continuity of f at x, there is a § > 0 so that

|flz)— fly)] <e whenever y € [0,27] and |z — y| < 4.

By the density of rationals, there is a ¢ € Q N [0, 27] so that |z — ¢| < 6. Thus for this ¢, since
flg) =0,
[f(@)] = [f(x) = 0] = [f(x) = fg)] <e.

Since € was arbitrary, f(z) = 0. O

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a.) Statement: Let (F,+,,0,1) be a field. If z,y € F such that x # 0 satisfy x -y = x then
y=1.

TRUE. Since z # 0 it has an inverse ~!. Premultiplying the equation, x~!(zy) = 2~ 'z, so
by associativity (z~'x)y = 2~ x, by multiplicative inverse 1-y = 1 and by multiplicative identity,
y = 1.

(b.) Statement: The sequence {n} is a Cauchy Sequence.
n

TRUE. It converges n

— 1 as n — oo, thus is a Cauchy Sequence.



1
(c.) Statement: If f,,g: R — R are functions such that |f,(x) — g(z)| < on for all x € R

and for alln € N. Then f, — g uniformly in R.
TRUE. Choose € > 0. Let R € R be such that 2% < €. then for any x € R and any n € N
such that n > R we have ) )
[falz) —g(@)l < o < o <&
But this is the definition of f,, converging uniformly to g on R.

x

4. Let E = / f(z) sinzdz | f:[0,7] — R is continuous and f(x) > 0 for all x € [0,7] . Show

that E s nonegnpty and bounded below. What is the greatest lower bound of E? Does the set F
have a minimum? Justify your answers.

Since f(z) is continuous and sinz is continuous, both are integrable, hence their product
f(z) sinz is integrable and its integral has a real value in E, showing E # (). We show F is
bounded below by zero, namely for all z € E we have z > 0. Observe that sinz > 0 since
0 <z <m. Also f(z) > 0 for such z. Hence f(z) sinz > 0. Integrating

/7T f(z) sinzdx > 0.
0

Since all numbers in E are of this form, 0 is a lower bound for F.
Second we show that zero is the greatest lower bound. We show for every € > 0 there is
a z € F such that z < 04 . Hence positive numbers are not lower bounds. Choose € > 0.

€ . . . . .
Then f(z) = 5r 82 continuous, positive function. Because sinz < 1 for z € [0, 7] we have
™

f(z)sinx < Qi for 0 < x < 7. Then the element z € E given by
s

z:/ f(x) sinxdxg/ —dr=-<e.
Thus ¢ is not a lower bound so 0 must be the greatest lower bound.
Third, the set E does not have a minimum since z > 0 for all z € F. To see this, choose z € F.
xT

Thus z = f(z) sinz dx for some continuous, positive f. Since f is continuous on [0, 7] it takes
0
its minimum: there is a ¢ € [0, 7] such that f(c) = [inf] f. But since f is positive, f(¢) > 0. But
0,7

sina > 0 implies f(x) sinz > f(c) sinz for 0 <z <, it follows that z > 0 because

z= /07r f(x) sinzdx > f(c) /()Trsinxdx =2f(c) > 0.

5. Prove that if f : R — R is differentiable on R and f'(x) is bounded on R, then f is uniformly
continuous on R.

We show that f is uniformly continuous, namely, for all ¢ > 0 there is a § > 0 so that
|f(z) — f(y)| < € whenever z,y € R and |z — y| < §. Choose € > 0. Because f’ is bounded, there

isan M € R so that |f'(c)] < M for all z € R. Let 6 = ﬁ Suppose that z,y € R such

that |z —y| < d. If z = y then |f(z) — f(y)] = 0 < ¢ and we are done. If x # y, for convenience
we may assume that x < y by swapping roles if necessary. Now, as it is differentiable, f is
continuous on R. Hence it is continuous on [z,y] and differentiable on (z,y) because these are
subintervals of R. Hence we may apply the Mean Value Theorem: there is a ¢ € (z,y) so that

fy)— f(x) = f'(c)(y — z). Tt follows that

() = @) = F'(©lly — 2| < Mly -2 < M- —

1+ M

<e. 0O



5. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a.) Statement: If f :[0,00) — R is continuous, positive and f(x) — 0 as x — oo then the

improper integral f(x)dz converges.
0

FALSE. The function f(x) = 1 _|1_
T

its improper integral does not converge:

is continuous on [0, 00) and tends to zero as x — oo. But

R R dr
/ fz)de = hm ; f()x:Rh—I}éo ; 1+x—olgnln(1+R)

oo o0 oo
(b.) Statement: If Zak and Zbk are convergent series then Z[ak + bi] is a convergent

‘ k=1 k=1 k=1
series.

TRUE. Because the finite sum is additive, we may deduce the result from the sum theorem
for limits:
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(c.) Statement: If f : [0,1] — R is nonnegative and bounded, then it is integrable on [0,1].
FALSE. The Dirichlet Function

)1, ifr ey
f(x)_{o, ifz ¢ Q;

satisfies 0 < f(x) < 1 so is nonnegative and bounded. It is also not integrable. Any lower sum is

—1
dead zero so f;f dxr = 0 and any upper sum is one so fof dx = 1 which are not equal.

7. Let a < b and [ : [a,b] — R. Show that if for all € > 0 there are integrable functions
b
g,h : a,b] — R such that g(z) < f(x) < h(z) for all x € [a,b] and / h(z) — g(x)de < € then f

is integrable on [a,b].

We use the theorem characterizing integrability: the bounded function f : [a,b] — R is
integrable on [a, b] if and only if for every & > 0 there is a partition P of [a, b] such that the upper
and lower sums satisfy U(f,P) — L(f,P) <e

If P is a partition and Ij is one of the subintervals of the partition, denote by My(f) =
sup{f(x) : x € I} and by my(f) = inf{f(x) : x € I}.}.



Choose € > 0. Let g and h be the given integrable functions such that g(z) < f(z) < h(z)

b
and / h(z) — g(z)de < g Choose a partition P’ such that U(g,P’) — L(g,P") < =. Choose a

Wl m

partition P such that U(h,P"”) — L(h,P") < % Let P = P’ UP” be the common refinement.
Since refining increases lower sums and degreases upper sums, we have U(g,P) — L(g,P) < %

and U(h,P)— L(h,P) < % Also, the integral falls between the lower sum and upper sum, so we

have

b b
L(g,’P)—/ gdx <§, and U(h,P)—/ hdx

<<
3

Now let’s estimate the lower and upper sum for f. Because g < f we have my(g) < m(f),
so by summing,

L(g,P) = > mu(g)(ar — zp—1) < Y mu(f)(@x — zx-1) = L(f, P).
k=1 k=1

Similarly, because f < h we have My (f) < My(h), so by summing, U(f,P) < U(h,P). Now,
assemble the inequalities. For the partition P we have

U(f,P) = L(f,P) <U(h,P) = L(g,P)

Lol Lol )

+ g,)/g
E € €
S+ 4+=¢ 0O
<3+3+35

8. Determine whether the following series are absolutely convergent, conditionally convergent or
divergent. In each case you must justify your answer.

) S = Z logk

CONVERGENT. Recall the definitions. If Zak is a series then the series is absolutely
k=1

convergent if the series of absolute values converges, namely the sequence of absolute partial
n

sums has a finite limit: lim E |ax| converges. The series is convergent if the sequence of partial
n—oo

k=1
n

sums itself has a finite limit: lim E ay, converges. Absolute convergence implies convergence,
n—oo

k=1
proved e.g., using the Cauchy Criterion. The series is divergent if it is not convergent.

log k
The (—1)¥ make the terms alternate signs. The magnitude of the summand % decreases

- Then f'(z) =

is strictly decreasing and positive for £ > 3. By I’'Hopital’s Rule, hm

log x log x

and tends to zero. To see it, let f(x) = < 0if x > e. Hence f(k)

1 1

08T _ lim — = 0 so
r—oo I

f(k) — 0 as k — oo. Thus the conditions for the alternating series test hold and S converges.




1 n
However, f(k) > Z for k > 3 so that Zf(k) > — 00 as n — oo because the harmonic

k=3

1
z

>
Il
w

series diverges to inﬁnity.

Z Ve log k
< log( k:2—|—k:+ 1)

DIVERGENT A necessary condition for the convergence of an infinite sum is that the terms

1
08 , by 'Hopital’s Rule,

tend to zero. However, letting f(z) = log@® +2+1)
og(z? +x

1
— 2
. . T oo x4+l 1
Jm o) = Jim e = i e s T o
22+z+1

Thus the terms (—1) f(k) do not tend to zero and the series is divergent.

oo

log k&
(c) §=Y (-1)* o
k=1 |
ABSOLUTELY CONVERVENT. Let f(z) = ogx. The absloute sum is convergent by the
—21
integral test. Since f'(z) = ﬁ < 0 for > 2, we can compare the partial sum with the
x

integral. By substituting v = log z,

"logzd ogn 1+1
Zf(k)g/ &sz/ et du =1 111981
1 T 0 n

for all n > 3. Since the absolute partial sums form a nondecreasing sequence, it is convergent
because it is bounded above.

9. Prove that z'fZak is an absolutly convergent series and if {by} is a bounded then Zakbk 18

k=1 k=1
an absolutly convergent series.
(oo} n
g ay is absolutely convergent if the series of absolute values converges, namely lim g lak]
n—oo
k=1 k=1

converges to a finite limit.

n n
Let’s prove the Cauchy Criterion for convergence. Put S, = Z la;b;|, T, = Z |a;|. Because
Jj=1 Jj=1

{b;} is bounded, there is an M € R so that |b;| < M for all j € N. Since the series is absolutely
convergent, it is a Cauchy Sequence: for every € > 0, there is an R € R so that

|Tk — Tz| <

c whenever k, ¢ € N such that k,¢ > R.
1+ M

Now suppose that k,¢ € N such that k,£ > R. If k = £ then |S; — S¢| = 0 < & so we are done. If



k # £, we may swap roles if necessary to arrange that & < ¢. Thus

£ k
S0 = Skl = D labj| = > lasb;
j=1 k=1
4

= Y lajl b

j=k+1
L
<M Y g
=kt 1
l k
= M| lag| =) la;
j=1 k=1
g
=M|Ty —T| <M <e.
ITe = Tl 1+M ~°
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