
Math 3210 § 2.
Treibergs

First Midterm Exam Name: Solutions
September 10, 2025.

1. Prove that for all n ∈ N,
n∑

k=1

1

(k + 1)(k + 2)
=

n

2(n+ 2)
. (1)

Proof by induction. For the base case n = 1, the equation (1) holds.

LHS =

n∑
k=1

1

(k + 1)(k + 2)
=

1

2 · 3
=

1

6
; RHS =

n

2(n+ 2)
=

1

2(3)
=

1

6
.

For the induction case, suppose the equality (1) holds for some n. Then for n + 1, using
the induction hypothesis,

n+1∑
k=1

1

(k + 1)(k + 2)
=

n∑
k=1

1

(k + 1)(k + 2)
+

n+1∑
k=n+1

1

(k + 1)(k + 2)

=
n

2(n+ 2)
+

1

(n+ 2)(n+ 3)

=
1

n+ 2

[
n

2
+

1

n+ 3

]
=

1

n+ 2
· n

3 + 3n+ 2

2(n+ 3)

=
1

n+ 2
· (n+ 2)(n+ 1)

2(n+ 3)

=
(n+ 1)

2[(n+ 1) + 2]

which is the statement for n + 1. Since both the base case and induction case hold, by
induction (1) holds for all n.

2. Recall the axioms of a field (F ,+,×). For any x, y, z ∈ F ,

[A1.] (Commutativity of Addition) x+ y = y + x.

[A2.] (Associativity of Addition) x+ (y + z) = (x+ y) + z.

[A3.] (Additive Identity) (∃ 0 ∈ F) (∀ t ∈ F) 0 + t = t.

[A4.] (Additive Inverse) (∃−x ∈ F) x+ (−x) = 0.

[M1.] (Commutativity of Multiplication) xy = yx.

[M2.] (Associativity of Multiplication) x(yz) = (xy)z.

[M3.] (Multiplicative Identity) (∃ 1 ∈ F) 1 ̸= 0 and (∀ t ∈ F) 1t = t.

[M4.] (Multiplicative Inverse) If x ̸= 0 then (∃x−1 ∈ F) (x−1)x = 1.

[D.] (Distributivity) x(y + z) = xy + xz.

Using only the field axioms, show that if a, b, c ∈ F and a ̸= 0 then there is at most one
solution x to ax + b = c. Justify every step of your argument using just the axioms listed
here. Do not quote any formulas from the text.
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We suppose that there are two solutioms, call them y and z and argue they must be the
same number. They both satisfy ay + b = c and az + b = c

ay + b = az + b Both expressions equal c, thus they equal each

other.

(ay + b) + (−b) = (az + b) + (−b) By the existence of additive inverse (A4), there

is −b. Post add it to both sides.

(ay) + (b+ (−b)) = (az) + (b+ (−b)) By associativity of addition (A3).

(ay) + 0 = (az) + 0 By property of additive inverse (A4).

0 + (ay) = 0 + (az) By commutativity of addition (A1).

ay = az By property of additive identity (A3).

a−1(ay) = a−1(az) Since a ̸= 0, by existence of multiplicative inverse

(M4), there is a−1. Pre multiply both sides.

(a−1a)y = (a−1a)z By associativity of multiplication (M2).

1 · y = 1 · z By property of multiplicative inverse (M4).

y = z By property of multiplicative identity (M3).

We conclude that the two solutions are equal. Thus there is at most one solution to this
equation.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: Let f : A → B and E,G ⊂ A. Then f(E ∩G) = f(E) ∩ f(G).

False. Let A = B = R, f(x) = x2, E = (−2, 1] and G = [1, 2). Then E ∩G = ∅ so
f(E ∩G) = ∅ but f(E) = f(G) = [1, 4) so that f(E) ∩ f(G) = [1, 4).

(b) Statement. Let (N, s(·)) be a number system satisfying the Peano Axioms. Then
the successor function s(x) is onto.

False. The Peano Axiom N3 “1 is not the successor of an element of N” tells us
that 1 is not in the range of s, thus s is not onto.

(c) Statement. A = {x ∈ R : (∀s > 1)(∃t < s)(t ≤ x < s)} = (−∞, 1].

True. In terms of set equality A =
⋂

s>1

⋃
t<s[t, s) =

⋂
s>1(−∞, s) = (−∞, 1].

We can also argue that A ⊂ (−∞, 1] and (−∞, 1] ⊂ A.

For the first, let y ∈ A. Since for all s > 1 we have there is some t < s so that t ≤ y < s
says y < s for all s > 1. Thus y ≤ 1 or y ∈ (−∞, 1]. For the second, if z ∈ (−∞, 1]
then z ≤ 1. But this says for all s > 1 we have z < s. By taking t = x there is t < s
such that t ≤ z < s. Thus z ∈ A.

4. (a) Determine whether the cube root of 7 is irrational.

x = 3
√
7 is irrational. Argue by contradiction. Suppose that x were rational

x =
p

q

where p and q are integers without a common factor. Then x3 = 7 or

p3 = 7q3

Thus 7|p3. Since 7 is prime, 7|p so p = 7k for some integer k. Hence

73k3 = 7q3

2



or
q3 = 72k3.

Thus 7|q3. Since 7 is prime, 7|q. We have reached a contradiction: 7 is a common
factor of both p and q. Thus the statement must have been true: 3

√
7 is irrational.

(b) Recall that the rational numbers are defined to be the set of equivalence classes Q =

S/ ∼ where S =
{a

b
: a, b ∈ Z, b ̸= 0

}
is the set of symbols (pairs of integers) and

the symbols are equivalent if they represent the same fraction:
a

b
∼ c

d
iff ad = bc.

We denote the equivalence class, the “fraction” by
[a
b

]
to distinguish it from a symbol

from S. Addition and multiplication of rationals, for example, is defined on equivalence
classes by [m

n

]
+
[r
t

]
=

[
mt+ nr

nt

]
,

[m
n

]
·
[r
t

]
=

[mr

nt

]
.

Show that the distributive axiom x(y + z) = xy + xz holds for all x, y and z in the
rational numbers.

Choose representatives of the three rational numbers

x =

[
p

q

]
, y =

[a
b

]
, z =

[r
s

]
were p, q, a, b, r, s are integers where q, b, s are nonzero. Then using the definitions of
addition and multiplication

x(y + z) =

[
p

q

]([a
b

]
+
[r
s

])
=

[
p

q

]([
as+ br

bs

])
=

[
p(as+ br)

q(bs)

]
=

[
qp(as+ br)

q2(bs)

]
=

[
(pa)(qs) + (qb)(pr)

(qb)(qs)

]
=

[
pa

qb

]
+

[
pr

qs

]
=

[
p

q

] [a
b

]
+

[
p

q

] [r
s

]
= xy + xz

5. A subset of the real numbers is given by E =

{
n2

2n2 − 1
: n ∈ N

}
.

Find the greatest lower bound ℓ = glbE and prove your result.

We claim that the greatest lower bound is ℓ = 1
2 . To see that it is a lower bound, for every

n ∈ N we have
n2

2n2 − 1
≥

n2 − 1
2

2n2 − 1
=

1

2
.

To see that there is no greater lower bound, choose m > 1
2 to show m is not a lower bound.

By the Archimedean Property of the reals, there is n0 ∈ N such that

1

n0
<

√
2m− 1.

For such n0 we have

n2
0

2n2
0 − 1

=
n2
0 − 1

2 + 1
2

2n2
0 − 1

=
1

2
+

1

2(2n2
0 − 1)

≤ 1

2
+

1

2(2n2
0 − n2

0)
=

1

2
+

1

2n2
0

<
1

2
+

(
m− 1

2

)
= m.

Thus an element of E is less than m so that m is not a lower bound. Thus ℓ = 1
2 is the

greatest lower bound.

3


