
Math 3210 § 1.
Treibergs

Second Midterm Exam Name:
March 1, 2023

1. Let an =

√
n− 1

n+ 1
. Define: L = lim

n→∞
an. Find L using limit laws.

Prove using just your definition that L = lim
n→∞

an.

A real number L is the limit L = lim
n→∞

an if for every ε > 0 there is an N ∈ R such that

|an − L| < ε whenever n > N .

Using the root law, quotient law and sum law,

L = lim
n→∞

√
n− 1

n+ 1
=

√
lim
n→∞

n− 1

n+ 1

=

√√√√√√ lim
n→∞

1− 1

n

1 +
1

n

=

√√√√√√√
lim
n→∞

(
1− 1

n

)
lim
n→∞

(
1 +

1

n

) =

√
1− 0

1 + 0
= 1.

To prove that lim
n→∞

an = 1, choose ε > 0. Let N =
2

ε
− 1. For any n ∈ N such that n > N

we have

|an − 1| =

∣∣∣∣∣
√
n− 1

n+ 1
− 1

∣∣∣∣∣ =

∣∣∣∣∣∣
(√

n− 1

n+ 1
− 1

) √n−1
n+1 + 1√
n−1
n+1 + 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
n− 1

n+ 1
− 1√

n− 1

n+ 1
+ 1

∣∣∣∣∣∣∣∣
≤
∣∣∣∣n− 1

n+ 1
− 1

∣∣∣∣ =

∣∣∣∣n− 1

n+ 1
− n+ 1

n+ 1

∣∣∣∣ =

∣∣∣∣ −2

n+ 1

∣∣∣∣ =
2

n+ 1
<

2

N + 1
= ε.

2. Define the real sequence {an} recursively by a1 = 1 and by an+1 = 6+
√
an for n ≥ 1. Show

that {an} is convergent.

We show that {an} is increasing and bounded above. Thus, by the Monotone Convergence
Theorem, an → a as n→∞ for some a ∈ R.

To show that {an} is increasing, note that f(x) = 6 +
√
x is increasing on [0,∞). Argue by

induction to show that 1 ≤ an < an+1.

For the base case, we see that

a2 = f(a1) = 6 +
√
a1 = 6 +

√
1 = 7 > 1 = a1.

For the induction case, assume for some n that 1 ≤ an < an+1. 1 ≤ an+1 is immediate.
Applying f we see that

an+2 = f(an+1) > f(an) = an+1

since f is increasing and both an and an+1 are in the domain of f . Thus it follows by
induction that 1 ≤ an < an+1 for all n.

To show that {an} is bounded above, we shall show thqt an ≤ 9. In fact any larger number
will work also. Arguing by induction, the base case follows since we are given a1 = 1 < 9.

For the induction case, assume that an ≤ 9 for some n. Then from before an ≥ 1 so an is
in the domain of f and

an+1 = 6 +
√
an ≤ 6 +

√
9 = 9.

Thus it follows by induction that an ≤ 9 for all n.
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3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement. Let In be a sequence of bounded intervals such that I1 ⊃ I2 ⊃ · · · . Then
∞⋂

n=1

In 6= ∅.

False. If the intervals were closed then the answer would have been “true” by the
Nested Intervals Theorem. But being closed was not specified, so if we take In =(

0,
1

n

)
then

∞⋂
n=1

In = ∅.

(b) Statement. No real sequence {an} satisfies lim sup
n→∞

an = −∞.

False. Take the sequence an = −n which converges to −∞. For the lim sup, we note
that

sn = sup{ak : k ≥ n} = −n

so that
lim sup
n→∞

an = lim
n→∞

sn = −∞.

(c) Statement. Suppose the real sequence {an} is not bounded above. Then there is a
subsequence ank

→∞ as k →∞.

True. Since the sequence is not bounded above, for every M ∈ R there is an n
such that an > M . We select a subsequence of larger and larger terms. The only
technicality is to arrange that the terms occur in increasing order in the sequence.
Start by choosing n1 ∈ N so that an1

> 1. Then choose n2 so that

an2
> max{a1, . . . , an1

, 2}.

Since an2
is larger than all a1, . . . , an1

the n2 cannot be any of 1, 2, . . . , n1 thus n2 > n1.
Also an2

> 2. Continue in this fashion. Suppose that n1 < . . . < nj have been chosen
such that anj

> j. Then choose nj+1 ∈ N so that

anj+1
> max{a1, . . . , anj

, j + 1}

Since anj+1
is larger than all a1, . . . , anj

the nj+1 cannot be any of 1, 2, . . . , nj , thus it
must satisfy nj+1 > nj . Also anj+1

> j + 1.

Thus we have constructed a subsequence anj
> j which tends to ∞ as j →∞.
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4. Let {ab} and {bn} be a real sequences which converge to real numbers an → a and bn → b
as n→∞ and that for some N ∈ R,

an ≤ bn whenever n > N .

Using just the definition of convergence, prove that a ≤ b.
We show that for every ε > 0 we have b − a > −ε which implies b − a ≥ 0. Choose ε > 0.
Since an → a and bn → b as n→∞, there are N1 and N2 in R so that

|an − a| <
ε

2
, whenever n > N1;

|bn − b| <
ε

2
, whenever n > N2.

By the Archimedean Property, there is n ∈ N such that n > max{N1, N2, N}. For this n

b− a = bn + (b− bn)− an − (a− an) ≥ bn − an − |b− bn| − |a− an| > 0− ε

2
− ε

2
= −ε.

We have shown that b− a > −ε for every ε > 0 which implies b− a ≥ 0.

5. Define: {xn} is a Cauchy Sequence. Let xn =

n∑
k=1

1− 2 cos(k)

k!
.

Prove that {xn} is convergent.

A real sequence {xn} is a Cauchy Sequence if for every ε > 0 there is an N ∈ R such that

|xm − x`| < ε, whenever m > N and ` > N .

Observe that
|1− 2 cos(k)| ≤ |1|+ |2 cos(k)| ≤ 1 + 2 = 3. (1)

Also, the factorial satisfies
k! ≥ 2k−1 (2)

for all k ∈ N. We can see this by induction. For the base case 1! = 1 = 21−1. For the
induction case, assume that k! ≥ 2k−1 for some k ∈ N. Then since k ≥ 1,

(k + 1)! = (k + 1) · k! ≥ 2 · 2k−1 = 2(k+1)−1.

Hence by induction, k! ≥ 2k−1 for all k ∈ N.

To prove that {xn} converges we show that it is a Cauchy Sequence, hence convergent.

Choose ε > 0. Let N ∈ R be such that
3

2N−1
= ε. Suppose that m, ` ∈ N such that m > N

and ` > N . Then if m = ` we have |xm − x`| = 0 < ε. If m 6= `, without loss of generality
we may assume m > `. Otherwise, we may swap the roles of m and `. We have by the
triangle inequality, (1), (2) and replacing the dummy index by k = `+ 1 + j,

|xm − x`| =

∣∣∣∣∣
m∑

k=1

1− 2 cos(k)

k!
−
∑̀
k=1

1− 2 cos(k)

k!

∣∣∣∣∣ =

∣∣∣∣∣
m∑

k=`+1

1− 2 cos(k)

k!

∣∣∣∣∣ ≤
m∑

k=`+1

|1− 2 cos(k)|
k!

≤
m∑

k=`+1

3

k!
≤

m∑
k=`+1

3

2k−1
=

3

2`

m−`−1∑
j=0

1

2j
=

3

2`
·

1− 1

2m−`

1− 1

2

<
3

2`−1
<

3

2N−1
= ε.

We have used the formula for the sum of a geometric series

p∑
j=0

rj =
1− rp+1

1− r
.
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