\qquad

1. Let $a_{n}=\sqrt{\frac{n-1}{n+1}}$. Define: $L=\lim _{n \rightarrow \infty} a_{n}$. Find L using limit laws.

Prove using just your definition that $L=\lim _{n \rightarrow \infty} a_{n}$.
A real number L is the limit $L=\lim _{n \rightarrow \infty} a_{n}$ if for every $\varepsilon>0$ there is an $N \in \mathbf{R}$ such that

$$
\left|a_{n}-L\right|<\varepsilon \quad \text { whenever } n>N .
$$

Using the root law, quotient law and sum law,

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \sqrt{\frac{n-1}{n+1}}=\sqrt{\lim _{n \rightarrow \infty} \frac{n-1}{n+1}} \\
& =\sqrt{\lim _{n \rightarrow \infty} \frac{1-\frac{1}{n}}{1+\frac{1}{n}}}=\sqrt{\frac{\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)}{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)}}=\sqrt{\frac{1-0}{1+0}}=1 .
\end{aligned}
$$

To prove that $\lim _{n \rightarrow \infty} a_{n}=1$, choose $\epsilon>0$. Let $N=\frac{2}{\varepsilon}-1$. For any $n \in \mathbb{N}$ such that $n>N$ we have

$$
\begin{aligned}
\left|a_{n}-1\right| & =\left|\sqrt{\frac{n-1}{n+1}}-1\right|=\left|\left(\sqrt{\frac{n-1}{n+1}}-1\right) \frac{\sqrt{\frac{n-1}{n+1}}+1}{\sqrt{\frac{n-1}{n+1}}+1}\right|=\left|\frac{\frac{n-1}{n+1}-1}{\sqrt{\frac{n-1}{n+1}}+1}\right| \\
& \leq\left|\frac{n-1}{n+1}-1\right|=\left|\frac{n-1}{n+1}-\frac{n+1}{n+1}\right|=\left|\frac{-2}{n+1}\right|=\frac{2}{n+1}<\frac{2}{N+1}=\varepsilon .
\end{aligned}
$$

2. Define the real sequence $\left\{a_{n}\right\}$ recursively by $a_{1}=1$ and by $a_{n+1}=6+\sqrt{a_{n}}$ for $n \geq 1$. Show that $\left\{a_{n}\right\}$ is convergent.
We show that $\left\{a_{n}\right\}$ is increasing and bounded above. Thus, by the Monotone Convergence Theorem, $a_{n} \rightarrow a$ as $n \rightarrow \infty$ for some $a \in \mathbf{R}$.
To show that $\left\{a_{n}\right\}$ is increasing, note that $f(x)=6+\sqrt{x}$ is increasing on $[0, \infty)$. Argue by induction to show that $1 \leq a_{n}<a_{n+1}$.
For the base case, we see that

$$
a_{2}=f\left(a_{1}\right)=6+\sqrt{a_{1}}=6+\sqrt{1}=7>1=a_{1} .
$$

For the induction case, assume for some n that $1 \leq a_{n}<a_{n+1} .1 \leq a_{n+1}$ is immediate. Applying f we see that

$$
a_{n+2}=f\left(a_{n+1}\right)>f\left(a_{n}\right)=a_{n+1}
$$

since f is increasing and both a_{n} and a_{n+1} are in the domain of f. Thus it follows by induction that $1 \leq a_{n}<a_{n+1}$ for all n.
To show that $\left\{a_{n}\right\}$ is bounded above, we shall show thqt $a_{n} \leq 9$. In fact any larger number will work also. Arguing by induction, the base case follows since we are given $a_{1}=1<9$.
For the induction case, assume that $a_{n} \leq 9$ for some n. Then from before $a_{n} \geq 1$ so a_{n} is in the domain of f and

$$
a_{n+1}=6+\sqrt{a_{n}} \leq 6+\sqrt{9}=9 .
$$

Thus it follows by induction that $a_{n} \leq 9$ for all n.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Statement. Let I_{n} be a sequence of bounded intervals such that $I_{1} \supset I_{2} \supset \cdots$. Then $\bigcap_{n=1}^{\infty} I_{n} \neq \emptyset$.
False. If the intervals were closed then the answer would have been "true" by the Nested Intervals Theorem. But being closed was not specified, so if we take $I_{n}=$ $\left(0, \frac{1}{n}\right)$ then $\bigcap_{n=1}^{\infty} I_{n}=\emptyset$.
(b) Statement. No real sequence $\left\{a_{n}\right\}$ satisfies $\limsup _{n \rightarrow \infty} a_{n}=-\infty$.

False. Take the sequence $a_{n}=-n$ which converges to $-\infty$. For the lim sup, we note that

$$
s_{n}=\sup \left\{a_{k}: k \geq n\right\}=-n
$$

so that

$$
\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=-\infty
$$

(c) Statement. Suppose the real sequence $\left\{a_{n}\right\}$ is not bounded above. Then there is a subsequence $a_{n_{k}} \rightarrow \infty$ as $k \rightarrow \infty$.
True. Since the sequence is not bounded above, for every $M \in \mathbf{R}$ there is an n such that $a_{n}>M$. We select a subsequence of larger and larger terms. The only technicality is to arrange that the terms occur in increasing order in the sequence. Start by choosing $n_{1} \in \mathbb{N}$ so that $a_{n_{1}}>1$. Then choose n_{2} so that

$$
a_{n_{2}}>\max \left\{a_{1}, \ldots, a_{n_{1}}, 2\right\} .
$$

Since $a_{n_{2}}$ is larger than all $a_{1}, \ldots, a_{n_{1}}$ the n_{2} cannot be any of $1,2, \ldots, n_{1}$ thus $n_{2}>n_{1}$. Also $a_{n_{2}}>2$. Continue in this fashion. Suppose that $n_{1}<\ldots<n_{j}$ have been chosen such that $a_{n_{j}}>j$. Then choose $n_{j+1} \in \mathbb{N}$ so that

$$
a_{n_{j+1}}>\max \left\{a_{1}, \ldots, a_{n_{j}}, j+1\right\}
$$

Since $a_{n_{j+1}}$ is larger than all $a_{1}, \ldots, a_{n_{j}}$ the n_{j+1} cannot be any of $1,2, \ldots, n_{j}$, thus it must satisfy $n_{j+1}>n_{j}$. Also $a_{n_{j+1}}>j+1$.
Thus we have constructed a subsequence $a_{n_{j}}>j$ which tends to ∞ as $j \rightarrow \infty$.
4. Let $\left\{a_{b}\right\}$ and $\left\{b_{n}\right\}$ be a real sequences which converge to real numbers $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$ as $n \rightarrow \infty$ and that for some $N \in \mathbf{R}$,

$$
a_{n} \leq b_{n} \quad \text { whenever } n>N
$$

Using just the definition of convergence, prove that $a \leq b$.
We show that for every $\varepsilon>0$ we have $b-a>-\varepsilon$ which implies $b-a \geq 0$. Choose $\varepsilon>0$. Since $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$ as $n \rightarrow \infty$, there are N_{1} and N_{2} in \mathbf{R} so that

$$
\begin{array}{ll}
\left|a_{n}-a\right|<\frac{\varepsilon}{2}, & \text { whenever } n>N_{1} \\
\left|b_{n}-b\right|<\frac{\varepsilon}{2}, & \text { whenever } n>N_{2}
\end{array}
$$

By the Archimedean Property, there is $n \in \mathbb{N}$ such that $n>\max \left\{N_{1}, N_{2}, N\right\}$. For this n

$$
b-a=b_{n}+\left(b-b_{n}\right)-a_{n}-\left(a-a_{n}\right) \geq b_{n}-a_{n}-\left|b-b_{n}\right|-\left|a-a_{n}\right|>0-\frac{\varepsilon}{2}-\frac{\varepsilon}{2}=-\varepsilon .
$$

We have shown that $b-a>-\varepsilon$ for every $\varepsilon>0$ which implies $b-a \geq 0$.
5. Define: $\left\{x_{n}\right\}$ is a Cauchy Sequence. Let $x_{n}=\sum_{k=1}^{n} \frac{1-2 \cos (k)}{k!}$.

Prove that $\left\{x_{n}\right\}$ is convergent.
A real sequence $\left\{x_{n}\right\}$ is a Cauchy Sequence if for every $\varepsilon>0$ there is an $N \in \mathbf{R}$ such that

$$
\left|x_{m}-x_{\ell}\right|<\varepsilon, \quad \text { whenever } m>N \text { and } \ell>N
$$

Observe that

$$
\begin{equation*}
|1-2 \cos (k)| \leq|1|+|2 \cos (k)| \leq 1+2=3 \tag{1}
\end{equation*}
$$

Also, the factorial satisfies

$$
\begin{equation*}
k!\geq 2^{k-1} \tag{2}
\end{equation*}
$$

for all $k \in \mathbb{N}$. We can see this by induction. For the base case $1!=1=2^{1-1}$. For the induction case, assume that $k!\geq 2^{k-1}$ for some $k \in \mathbb{N}$. Then since $k \geq 1$,

$$
(k+1)!=(k+1) \cdot k!\geq 2 \cdot 2^{k-1}=2^{(k+1)-1}
$$

Hence by induction, $k!\geq 2^{k-1}$ for all $k \in \mathbb{N}$.
To prove that $\left\{x_{n}\right\}$ converges we show that it is a Cauchy Sequence, hence convergent. Choose $\varepsilon>0$. Let $N \in \mathbf{R}$ be such that $\frac{3}{2^{N-1}}=\varepsilon$. Suppose that $m, \ell \in \mathbb{N}$ such that $m>N$ and $\ell>N$. Then if $m=\ell$ we have $\left|x_{m}-x_{\ell}\right|=0<\varepsilon$. If $m \neq \ell$, without loss of generality we may assume $m>\ell$. Otherwise, we may swap the roles of m and ℓ. We have by the triangle inequality, (1), (2) and replacing the dummy index by $k=\ell+1+j$,

$$
\begin{aligned}
\left|x_{m}-x_{\ell}\right| & =\left|\sum_{k=1}^{m} \frac{1-2 \cos (k)}{k!}-\sum_{k=1}^{\ell} \frac{1-2 \cos (k)}{k!}\right|=\left|\sum_{k=\ell+1}^{m} \frac{1-2 \cos (k)}{k!}\right| \leq \sum_{k=\ell+1}^{m} \frac{|1-2 \cos (k)|}{k!} \\
& \leq \sum_{k=\ell+1}^{m} \frac{3}{k!} \leq \sum_{k=\ell+1}^{m} \frac{3}{2^{k-1}}=\frac{3}{2^{\ell}} \sum_{j=0}^{m-\ell-1} \frac{1}{2^{j}}=\frac{3}{2^{\ell}} \cdot \frac{1-\frac{1}{2^{m-\ell}}}{1-\frac{1}{2}}<\frac{3}{2^{\ell-1}}<\frac{3}{2^{N-1}}=\varepsilon .
\end{aligned}
$$

We have used the formula for the sum of a geometric series

$$
\sum_{j=0}^{p} r^{j}=\frac{1-r^{p+1}}{1-r}
$$

