
Math 3210 § 1.
Treibergs

Third Midterm Exam Name: Solutions
April 5, 2023

1. Let D ⊂ R, a ∈ D and f : D → R. State the definition: f(x) is continuous at a in D. Using

just your definition and not the combinations theorem, prove that f(x) =
1√
x

is continuous

at a ∈ (0,∞).

Definition. f is continuous at a in D if for every ε > 0 there is a δ > 0 such that

|f(x)− f(a)| < ε whenever x ∈ D and |x− a| < δ.

We show that f(x) =
1√
x

is continuous at any given a ∈ (0,∞). Choose ε > 0. Let

δ = min

{
a

2
,
a

3
2 ε√
2

}
. Suppose that x ∈ (0,∞) such that |x − a| < δ. Because δ ≤ a

2
it

follows that
x = a+ (x− a) ≥ a− |x− a| > a− δ ≥ a− a

2
=
a

2
. (1)

Hence using (1) and δ ≤ a
3
2 ε√
2

,

|f(x)− f(a)| =
∣∣∣∣ 1√
x
− 1√

a

∣∣∣∣ =

∣∣∣∣√a−√x√
x
√
a

∣∣∣∣ =

∣∣∣∣√a−√x√
x
√
a
·
√
a+
√
x√

x+
√
a

∣∣∣∣
=

|a− x|√
x
√
a(
√
x+
√
a)
≤ |a− x|

(
√
x)a
≤ |a− x|

a
√

a
2

<

√
2δ

a
3
2

≤
√

2

a
3
2

· a
3
2 ε√
2

= ε.

2. Let I ⊂ R be an open interval and f : I → R. State the definition: f(x) is differentiable
at a ∈ I. Suppose that f : R → R is differentiable at a ∈ R. Using just your definition of
derivative and neither differentiation theorems nor chain rule, prove that g(x) = f(x)3 is
differentiable at a, and find g′(a).

Definition: f is differentiable at a if the real limit, call it f ′(a), exists:

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

Suppose that f is differentiable at a. We show that the difference quotient for g has a finite
limit and determine its value. For x ∈ I such that x 6= a,

g(x)− g(a)

x− a
=
f(x)3 − f(a)3

x− a
=
f(x)− f(a)

x− a
·
[
f(x)2 + f(x)f(a) + f(a)2

]
Use the assumption that f is differentiable at x = a implies that f is continuous at a so
that f(x)→ f(a) as x→ a. Now by the main theorem for limits,

lim
x→a

g(x)− g(a)

x− a
= lim

x→a

f(x)− f(a)

x− a
· lim
x→a

[
f(x)2 + f(x)f(a) + f(a)2

]
= f ′(a)

[
f(a)2 + f(a)2 + f(a)2

]
= 3f(a)2f ′(a).

Thus a real limit exists and equals what we expected g′(a) = 3f(a)2f ′(a).
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3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement. Let f : [0, 1] → R be continuous. Suppose {xn} is a sequence in [0, 1]
such that f(xn)→ sup

x∈[0,1]
f(x) as n→∞. Then {xn} converges.

False. Let f(x) = (2x − 1)2. Then 1 = supx∈[0,1] f(x) = f(0) = f(1) so f
has two maximizing points. Now choose xn to alternate between these points xn =
1
2 [(−1)n + 1]. Then f(xn) = 1 converges to the supremum of f but {xn} does not
converge.

Here {xn} is a maximizing sequence. The fact that a continuous function on a closed
bounded interval is bounded and and takes its maximum is proved by choosing a
convergent subsequence of a maximizing sequence. But if there are two maximum
points, the maximizing sequence itself may not converge.

(b) Statement. If f, g : [0, 1] → R are differentiable, f(0) = g(0) and f ′(x) > g′(x) for
all x, then f(x) > g(x) for 0 < x ≤ 1.

True. Let h(x) = f(x)−g(x) so h(0) = 0. Then for any a ∈ (0, 1] h is continuous on
[0, a] and differentiable on (0, a). Because h′(x) = f ′(x)− g′(x) > 0 for all x ∈ (0, a),
h(x) is strictly increasing so h(a) > 0. It follows that f(a) > g(a) as claimed. To see
this, apply the Mean Value Theorem. There is c ∈ (0, a) so that

h(a) = h(0) + h′(c)(a− 0) = 0 + h′(c)a > 0.

(c) Statement. Suppose f : (0, 1)→ R is uniformly continuous. Then f is bounded.

True. Since f is uniformly continuous on a bounded interval, it admits a continuous
extension f̄ to the closed interval [0, 1]. The continuous function f̄ on a closed, bounded
interval is bounded, hence f is bounded.

Several people argued by contradiction and tried to shaw that if f is unbounded then
f could not have been uniformly continuous, which was our homework problem 73[7].
Here is how that argument goes. The negation of uniform continuity is

Definition. The function : (0, 1) → R is not uniformly continuous if there is an
ε0 > 0 such that for every δ > 0 there are x, y ∈ (0, 1) such that |x − y| < δ but
|f(x)− f(y)| ≥ ε0.

Assume f is unbounded. Let x1 ∈ (0, 1) be any number. Then choose a sequence as
follows. Assume x1, . . . , nn have been chosen. Then from unboundedness there is an
xn+1 ∈ (0, 1) so that |f(xn+1)| > 1 + |f(xn)|. It follows for j > i from the reverse
triangle inequality, using |f(xk)| − |f(xk−1)| > 1 for all k that

|f(xj)− f(xi)| ≥
∣∣|f(xj)| − |f(xi)|

∣∣
=
∣∣(|f(xj)| − |f(xj−1)|) + (|f(xj−1)| − |f(xj−2)|) + · · ·+ (|f(xi+1)| − |f(xi)|)

∣∣
= (|f(xj)| − |f(xj−1)|) + (|f(xj−1)| − |f(xj−2)|) + · · ·+ (|f(xi+1)| − |f(xi)|)
> 1 + 1 + · · ·+ 1 = j − i ≥ 1.

(2)

Now {xn} ⊂ (0, 1) so it is a bounded sequence. By the Bolzano Weierstrass Theorem,
it has a convergent subsequence {xnk

} which is therefore a Cauchy Subsequence. Let
ε0 = 1. For any δ > 0 there is a K ∈ R so that

|xnj
− xni

| < δ whenever j, i > K.

Take any two natural numbers j > i > K. For these we have |xnj
− xni

| < δ and by
(2),

|f(xnj
)− f(xni

)| ≥ 1 ≥ ε0.
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Thus f is not uniformy continuous.

Here is a third (direct) argument. By uniform continuity, for ε = 1 there is a δ > 0 so
that

|f(x)− f(y)| < 1 whenever x, y ∈ (0, 1) and |x− y| < δ. (3)

By the Archimedean Property there is an n ∈ N such that 1
n < δ. Then there is the

bound

|f(x)| ≤ n+

∣∣∣∣f (1

2

)∣∣∣∣ for all x ∈ (0, 1). (4)

To see this, choose a ∈ (0, 1). consider the points

yk =
k

2n
+

(n− k)a

n
, for k = 1, . . . , n.

These points are equally spaced between a and 1
2 whose distance apart is |yk−1−yk| <

1
n < δ. Thus, using (3),∣∣∣∣f(a)− f

(
1

2

)∣∣∣∣ = |(f(y0)− f(y1)) + (f(y1)− f(y2)) + · · ·+ (f(yn−1)− f(yn))|

≤ |f(y0)− f(y1)|+ |f(y1)− f(y2)|+ · · ·+ |f(yn−1)− f(yn)|
< 1 + 1 + · · ·+ 1 = n.

Hence (4) follows

|f(a)| =
∣∣∣∣{f(a)− f

(
1

2

)}
+ f

(
1

2

)∣∣∣∣ ≤ ∣∣∣∣f(a)− f
(

1

2

)∣∣∣∣+

∣∣∣∣f (1

2

)∣∣∣∣ ≤ n+

∣∣∣∣f (1

2

)∣∣∣∣ .
4. Let D ⊂ R and f, fn : D → R be functions. State the definitions:

(a) {fn(x)} converges pointwise to a function f on D as n→∞.

(b) {fn(x)} converges uniformly to a function f on D as n→∞.

Determine whether the functions fn(x) =
1

1 + xn
converge pointwise, converge uniformly,

or do not converge to a function f(x) on (0,∞) and prove your result.

Definitions.

(a) {fn(x)} converges pointwise to a function f on D as n → ∞ if for every x ∈ D and
every ε > 0 there is an N ∈ R so that

|fn(x)− f(x)| < ε whenever n > N .

(b) {fn(x)} converges uniformly to a function f on D as n→∞ if for every ε > 0 there is
an N ∈ R so that

|fn(x)− f(x)| < ε whenever n > N and x ∈ D.

fn(x) =
1

1 + xn
converge pointwise to f(x) on (0,∞) where

f(x) =


1, if 0 < x < 1;
1
2 , if x = 1;

0, if 1 < x.

since lim
n→∞

1

1 + xn
=


1

1+0 , if 0 < x < 1;
1

1+1 , if x = 1;
1

1+∞ , if 1 < x.

The convergence is not uniform. The functions fn(x) are continuous on (0,∞). If the
convergence were uniform, then the uniform limit of continuous functions would have to be
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continuous, however, the limiting function here, which would have to be the same as the
pointwise limiting function f(x), is not continuous at x = 1.

Another argument is to consider the sequence {xn} ⊂ (0,∞) given by

xn = 2
1
n .

For this sequence

fn(xn)− f(xn) =
1

3

for all n, which is not tending to zero as n→∞ which would be the case were the conver-
gence uniform.

5. Let f : R → R is continuous and f(r) = 0 at each rational number r ∈ Q. Prove that
f(x) = 0 for all x ∈ R.

We prove that f(a) = 0 for any real number a ∈ R. The easiest way is to use the sequential
characterization of continuity. Since f is continuous at a, for every real sequence {xi} ⊂ R
sucn that xn → a as n→∞ we have

f(a) = lim
n→∞

f(xn).

Now, the rational numbers Q are dense in R, thus we can choose a sequence of rational
numbers rn ∈ Q such that rn → a as n → ∞ To see this, for every n ∈ N, by the density
of rationals, there is a rational number in every open interval, so we choose a rational
rn ∈ (a, a + 1

n ). Since |a − rn| < 1
n we have rn → a as n → ∞. Applying the sequential

characterization to this sequence,

f(a) = lim
n→∞

f(rn) = lim
n→∞

0 = 0

because, at rational numbers f(rn) = 0.

An alternative argument uses only the definition of continuity. Choose a ∈ R. Since f is
continuous at a, for every ε > 0 there is a δ > 0 such that

|f(a)− f(x)| < ε whenever x ∈ R and |x− a| < δ.

By the density of rationals, there is a rational number r such that |r − a| < δ. Hence for
this r

|f(a)− f(r)| < ε.

However, since f vanishes at rational numbers, f(r) = 0. Thus

|f(a)| < ε.

Since this holds for every ε > 0, we conclude that f(a) = 0.
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