
Math 3210 § 2.
Treibergs

Third Midterm Exam Name: Solutions
April 6, 2022

1. Let a ∈ R and f : R → R. State the definition: f(x) is continuous at a. Using just your
definition and not the combinations theorem, prove that f(x) = (x+ 1)2 is continuous at
a ∈ R.

f : R→ R is said to be continuous at a ∈ R is for every ε > 0 there is a δ > 0 such that

|f(x)− f(a)| < ε whenever x ∈ R and |x− a| < δ.

Choose ε > 0. Let δ = min

{
ε

3 + 2|a|
, 1

}
. Then for any x ∈ R such that |x − a| < δ we

have since δ ≤ 1,

|x+ a+ 2| = |(x− a) + 2a+ 2| ≤ |x− a|+ 2|a|+ 2 < δ + 2|a|+ 2 ≤ 3 + 2|a|.

Using this inequality,

|f(x)− f(a)| = |(x+ 1)2 − (a+ 1)2|
= |(x2 + 2x+ 1)− (a2 + 2a+ 1)|
= |x2 − a2 + 2(x− a)|
= |(x+ a+ 2)(x− a)|
= |x+ a+ 2| |x− a|
< (3 + 2|a|)δ

≤ (3 + 2|a|) · ε

3 + 2|a|
= ε.

2. Let I ⊂ R be an open interval and f : I → R. State the definition: f(x) is differentiable
at a ∈ I. Suppose that f : R → R satisfies |f(x)| ≤ |x|3/2. Using just your definition
of derivative and properties of limits of functions, prove carefully that f is differentiable at
a = 0, and find f ′(0).

f : I → R is said to be differentiable at a ∈ I if the following limit exists and is finite:

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

Since |f(x)| ≤ |x|3/2, we have |f(0)| ≤ |0|3/2 = 0 so f(0) = 0. We show that the derivative
exists and is zero f ′(0) = 0. Indeed, for x 6= 0,

−|x|1/2 = −|x|
3/2

|x|
≤ f(x)− f(a)

x− a
=
f(x)− 0

x− 0
≤ |x|

3/2

|x|
= |x|1/2

Letting x → 0, square roots at the ends tend to zero so by the Squeeze Theorem, the
expression in the middle tends to f ′(0) = 0.
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3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statemnet: If f is differentiable and f ′ > 0 everywhere in R, then f has an inverse
function which is differentiable and strictly increasing on f(R).

True. The fact that f is differentiable at all x implies f is continuous at all x. The
assumption that f ′(x) > 0 for all x says f is strictly increasing on R so its image
J = f(R) is an interval and f has a a contnuous inverse function f−1 : J → R.
At all corresponding points f(a) = b, because f is differentiable and f ′(a) 6= 0, the

derivative of the inverse function exists and satisfies
d

dy
f−1(b) =

1

f ′(a)
> 0. Hence

f−1 is differentiable at all b ∈ J and is strictly increasing on J .

(b) Statement: If f(x) =
x5 − 2x2 + 3

x4 − 2x2 + 3
, then there is a real number c such that f(c) = 0.

True. Note that the denominator x4−2x2+3 = (x2−1)2+2 > 0 for all x so that the

rational function g(x) is continuous on R. Since f(0) = 1 > 0 and f(−2) = −37

11
< 0

the value 0 is between these two, so by the Intermediate Value Theorem, there is
c ∈ (−2, 0) such that f(c) = 0.

(c) Statement: Suppose the function f(x) is a bounded and continuous for x ∈ (0, 1).
Suppose {xn} be a sequence in (0, 1) such that xn → 1 as n → ∞. Then the limit
L = lim

n→∞
f(xn) exists and is finite.

False. It would be true if f were uniformly continuous. For a continuous counterex-

ample, consider the function f(x) = cos

(
1

1− x

)
which is continuous and bounded,

|f(x)| ≤ 1, on (0, 1). For the sequence xn = 1 − 1

πn
→ 1 as n → ∞, we have

f(xn) = (−1)n, which does not converge as n→∞.

4. Let f, fn : R→ R be functions. State the definitions:

(a) {fn(x)} converges pointwise to a function f on R as n→∞.

(b) {fn(x)} converges uniformly to a function f on R as n→∞.

Determine whether the functions fn(x) =
nx

n2 + x2
converge pointwise, converge uniformly,

or do not converge to a function f(x) on the R and prove your result.

The sequence of functions fn → f is said to converge pointwise on R if for every a ∈ R and
every ε > 0 there is an N ∈ R such that

|fn(a)− f(a)| < ε whenever n > N .

The sequence of functions fn → f is said to converge uniformly on R if for every ε > 0
there is an N ∈ R such that

|fn(a)− f(a)| < ε whenever n > N and a ∈ R.

The sequence fn(x) =
nx

n2 + x2
converges pointwise but does not converge uniformly to

f(x) = 0 on R. To see the pointwise convergence, for any a ∈ R we have

lim
n→∞

fn(a) = lim
n→∞

na

n2 + a2
= lim

n→∞

a
n

1 + a2

n2

=
0

1 + 0
= 0.
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The easiest way to see that that the convergence is not uniform, we can use the theorem that
if fn → 0 uniformly on R, then for any sequence {xn} ⊂ R we have limn→∞ fn(xn) = 0.
But this fails by choosing the sequence xn = n we find for all n ∈ N,

fn(xn) =
nxn

n2 + x2n
=

n2

n2 + n2
=

1

2
6→ 0

as n→∞.

Another way is to prove the negation of the definition of uniform convergence fn → f ,
namely, to show that there is an ε0 > 0 such that for every N ∈ R there is an n ∈ N
such that n > N and an a ∈ R such that |fn(a) − f(a)| ≥ ε0. For the particular sequence

fn(x) =
nx

n2 + x2
and f(x) = 0, we put ε0 = 1

2 . For any N ∈ R, by the Archimedean

Axiom, there is n ∈ N such that n > N and for a = n we have

|fn(a)− f(a)| =
∣∣∣∣ na

n2 + a2
− 0

∣∣∣∣ =
n2

n2 + n2
=

1

2
≥ ε0.

5. For the bounded sequence {bn}, let

Sn = b0 +
b1
2

+
b2
22

+ · · ·+ bn
2n

=

n∑
k=0

bk
2k
.

Define: {Sn} is a Cauchy Sequence. Show that there is an L ∈ R such that Sn → L as
n→∞.

The sequence {Sn} is said to be a Cauchy Sequence if for every ε > 0 there is an N ∈ R
such that

|Sk − S`| < ε whenever k > N and ` > N .

{bn} bounded means that there is B ∈ R such that |bn| ≤ B for all n. To show that {Sn}

is a Cauchy Sequence, choose psilon > 0 and let N ∈ R be so large that
B

2N
< ε. Now for

any m, ` ∈ N we may suppose m > `. If instead m = ` then |Sm − S`| = 0 < ε or if m < `
we may swap the roles of m and ` since |Sm−S`| = |S`−Sm|. For any m > ` > N we have
by the triangle inequality and the formula for a geometric sum,

|Sm − S`| =

∣∣∣∣∣
m∑

k=0

bk
2k
−
∑̀
k=0

bk
2k

∣∣∣∣∣ =

∣∣∣∣∣
m∑

k=`+1

bk
2k

∣∣∣∣∣ ≤
m∑

k=`+1

|bk|
2k
≤

m∑
k=`+1

B

2k

=
B

2`+1
·
m−`−1∑
k=0

1

2k
=

B

2`+1
·

1−
(
1
2

)m−`
1− 1

2

<
B

2`
<

B

2N
< ε.

3


