Math 3210 § 2.	Second Midterm Exam	Name:	Solutions
Treibergs		March 2, 2022	

1. Let $f: I \to \mathbf{R}$ be a real valued function defined on the interval I = (0, 1).

Define: $M = \inf_{\mathbf{I}} f$. Let $g(x) = \frac{1}{x}$. Find $M = \inf_{I} g$ and prove your result.

If f is not bounded below, then we define $\inf_{\mathbf{I}} f = -\infty$. If f is bounded below, then the real number $M = \inf_{\mathbf{I}} f$ if (1) M is a lower bound, that is $M \leq f(x)$ for all $x \in I$ and (2) M is the greatest of all lower bounds. In other words, no larger number is a lower bound, that is, for every b > M there is $z \in I$ so that f(z) < b.

The function $g(x) = \frac{1}{x}$ is decreasing on the interval I thus we claim $\inf_{\mathbf{I}} g = 1$. To see that 1 is a lower bound, we observe that whenever $x \in I$, that is 0 < x < 1 then $1 < x^{-1} = f(x)$, so M = 1 is a lower bound. To see that no greater number is a lower bound, choose b > 1. Then $0 < \frac{1}{b} < 1$ and $f\left(\frac{1}{b}\right) = b$. Thus if we choose any number $\frac{1}{b} < z < 1$, such as the average $z = \frac{1}{2}\left(\frac{1}{b}+1\right)$, then $z \in I$ and since f is decreasing, $b = f\left(\frac{1}{b}\right) > f(z)$. Thus there is $z \in I$ so that f(z) < b.

2. Let $\{x_n\}$ be a real sequence and a a real number. Define: $a = \lim_{n \to \infty} x_n$. Find L and, using just your definition, prove that L is the limit. $L = \lim_{n \to \infty} \frac{\sqrt{1+4n^2}}{1+n}$. $a \in \mathbf{R}$ is the limit, $a = \lim_{n \to \infty} x_n$ means that for every $\epsilon > 0$ there is an $N \in \mathbf{R}$ such that

$$|x_n - a| < \epsilon$$
 whenever $n > N$.

By the Main Limit Theorem, we see that

$$L = \lim_{n \to \infty} \frac{\sqrt{1+4n^2}}{1+n} = \lim_{n \to \infty} \frac{\sqrt{\frac{1}{n^2}+4}}{\frac{1}{n}+1} = \frac{\sqrt{0+4}}{0+1} = 2.$$

To prove that L is the limit, we choose $\epsilon > 0$. Let $N = \frac{4}{\epsilon}$. Then for any $n \in \mathbb{N}$ such that n > N we have by rationalizing the numerator

$$\begin{aligned} |x_n - L| &= \left| \frac{\sqrt{1 + 4n^2}}{1 + n} - 2 \right| = \left| \frac{\sqrt{1 + 4n^2} - 2(n+1)}{1 + n} \right| \\ &= \left| \frac{\left[\sqrt{1 + 4n^2} - 2(n+1) \right]}{1 + n} \cdot \frac{\left[\sqrt{1 + 4n^2} + 2(n+1) \right]}{\left[\sqrt{1 + 4n^2} + 2(n+1) \right]} \right| \\ &= \frac{\left| \left[1 + 4n^2 \right] - 4(n+1)^2 \right|}{\left[1 + n \right] \left[\sqrt{1 + 4n^2} + 2(n+1) \right]} \\ &\leq \frac{\left| -8n - 3 \right|}{2(1 + n)^2} \leq \frac{8n + 8}{2(1 + n)^2} = \frac{4}{1 + n} < \frac{4}{1 + N} < \frac{4}{N} = \epsilon. \end{aligned}$$

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) STATEMENBT: Let $\{x_n\}$ and $\{y_n\}$ be a real sequences such that $y_n x_n = \frac{1}{2^n}$ for all n. Then $\emptyset \neq \bigcap_{n=1}^{\infty} [x_n, y_n]$.

FALSE. The statement would be true if assumed that the intervals were nested, $[x_1, y_1] \supset [x_2, y_2] \supset [x_3, y_3] \supset \cdots$ by the Nested Intervals Theorem. However that was not given, so we construct some disjoint intervals of the right lengths whose intersection is empty, e.g., $[x_1, y_1] = [0, .5], [x_2, y_2] = [1, 1.25]$ and $[x_n, y_n] = [2, 2 + \frac{1}{2^n}]$ for $n \ge 3$. Then $\emptyset = \bigcap_{n=1}^{\infty} [x_n, y_n]$.

(b) STATEMENT: If the sequence $\{x_n\}$ is not convergent, then none of its subsequences is convergent.

FALSE. The sequence $x_n = (-1)^n$ is not convergent but has the convergent subsequence $x_{2n} = (-1)^{2n} = 1 \rightarrow 1$ as $n \rightarrow \infty$.

- (c) STATEMENT: Suppose the sequence $\{a_n\}$ satisfies $a_n \neq 0$ for all n and converges to $a \in \mathbf{R}$. Then the sequence $\{1/a_n\}$ converges. FALSE. The statement would be true by the Main Limit Theorem if the additional assumption that $a \neq 0$ held. But this was not given. If we take $a_n = \frac{(-1)^n}{n} \to 0$ as $n \to 0$ we would have $\frac{1}{a_n} = (-1)^n n$ which does not converge.
- 4. Let $\{a_n\}$ be a real sequences that converges $a = \lim_{n \to \infty} a_n$ where a < 10. Using just the definition of convergence, prove there is an $N \in \mathbf{R}$ so that $a_n < 10$ whenever n > N.

Let $\epsilon = 10 - a > 0$. Since we assume $a_n \to a$ as $n \to \infty$, there is an $N \in \mathbf{R}$ such that

$$|a_n - a| < \epsilon$$
 whenever $n > N$.

For this N, if $n \in \mathbb{N}$ is any number such that n > N, then

$$a_n = a + (a_n - a) \le a + |a_n - a| < a + \epsilon = a + (10 - a) = 10.$$

5. Define: $\{x_n\}$ is a Cauchy Sequence. Let $x_n = \sum_{k=1}^n \frac{\sin(k)}{k^k}$. Prove that $\{x_n\}$ is convergent.

A sequence $\{x_n\}$ is called a Cauchy Sequence if for every $\epsilon > 0$ there is an $N \in \mathbf{R}$ so that

$$|x_i - x_j| < \epsilon$$
 whenever $i > N$ and $j > N$.

We show that the given sequence satisfies the Cauchy Criterion, hence is convergent. Choose $\epsilon > 0$. Let $N \in \mathbb{N}$ be large enough so that $2^{-N} < \epsilon$. For any $i, j \in \mathbb{N}$ such that i > N and j > N we may assume that i > j. If i = j then $|a_i - a_j| = 0 < \epsilon$. If i < j then interchange a_i and a_j . We have for such i > j, using $|\sin k| \le 1$ and $k^k \ge 2^k$ whenever $k \ge 2$,

$$|a_i - a_j| = \left| \sum_{k=1}^{i} \frac{\sin(k)}{k^k} - \sum_{k=1}^{j} \frac{\sin(k)}{k^k} \right| = \left| \sum_{k=j+1}^{i} \frac{\sin(k)}{k^k} \right| \le \sum_{k=j+1}^{i} \frac{|\sin(k)|}{k^k}$$
$$\le \sum_{k=j+1}^{i} \frac{1}{2^k} = \frac{1}{2^{j+1}} \sum_{\ell=0}^{i-j-1} \frac{1}{2^\ell} = \frac{1}{2^{j+1}} \cdot \frac{1 - \left(\frac{1}{2}\right)^{i-j}}{1 - \frac{1}{2}} \le \frac{1}{2^j} < \frac{1}{2^N} < \epsilon.$$