
Math 3210 § 2.
Treibergs

First Midterm Exam Name: Solutions
February 2, 2022.

1. Prove that for every natural number n

n∑
k=1

1

k(k + 1)
=

n

n + 1
. (1)

Proof by induction.

In the base case n = 1 the left side and right sides are equal.

LHS =

1∑
k=1

1

k(k + 1)
=

1

1 · 2
=

1

2
; RHS =

1

1 + 1
=

1

2
.

In the induction case, we assume that for some n ∈ N that

n∑
k=1

1

k(k + 1)
=

n

n + 1
.

Then for n + 1, using the induction hypothesis

n+1∑
k=1

1

k(k + 1)
=

(
n∑

k=1

1

k(k + 1)

)
+

1

(n + 1)(n + 2)

=
n

n + 1
+

1

(n + 1)(n + 2)

=
n(n + 2) + 1

(n + 1)(n + 2)

=
(n + 1)2

(n + 1)(n + 2)

=
n + 1

(n + 1) + 1
,

which is the statement for n+1. We conclude by induction that (1) holds for all n ∈ N.
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2. Recall the axioms of a field (F ,+,×). For any x, y, z ∈ F ,

[A1.] (Commutativity of Addition) x + y = y + x.

[A2.] (Associativity of Addition) x + (y + z) = (x + y) + z.

[A3.] (Additive Identity) (∃ 0 ∈ F) (∀ t ∈ F) 0 + t = t.

[A4.] (Additive Inverse) (∃−x ∈ F) x + (−x) = 0.

[M1.] (Commutativity of Multiplication) xy = yx.

[M2.] (Associativity of Multiplication) x(yz) = (xy)z.

[M3.] (Multiplicative Identity) (∃ 1 ∈ F) 1 6= 0 and (∀ t ∈ F) 1t = t.

[M4.] (Multiplicative Inverse) If x 6= 0 then (∃x−1 ∈ F) (x−1)x = 1.

[D.] (Distributivity) x(y + z) = xy + xz.

Using only the field axioms, show that for any a ∈ F the additive inverse −a is unique.
Justify every step of your argument using just the axioms listed here. Do not quote any
formulas from the text.

We suppose that there are two additive inverses for some a ∈ F , call them −a and w and
argue they must be the same number. Both satisfy axiom (A3), namely

a + (−a) = 0 and a + w = 0.

Both expressions equal zero, thus they equal each other.

a + (−a) = a + w Both expressions are equal.

(−a) + a = w + a Commutativity of addition. (A2)

((−a) + a) + (−a) = (w + a) + (−a) Additive inverse: there is a (−a) such that

a + (−a) = 0. Post-add it to both sides. (A4)

(−a) + (a + (−a)) = w + (a + (−a)) Associativity of addition. (A2)

(−a) + 0 = w + 0 Additive inverse. (A4)

0 + (−a) = 0 + w Commutivity of addition. (A1)

−a = w Additive identity. (A3)

We conclude that the two additive inverses are equal. Thus the additive invere is unique.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement. Let f : A→ B and E,G ⊂ A. Then f(E)\f(G) = f(E\G).

False. The equality holds if and only if f is one-to-one. A counterexample is given
by any not one-to-one function, such as f : R → R given by f(x) = x2. Let E =
[−3,−2) ∪ (2, 3] and G = (2, 3]. Then f(E) = f(G) = (4, 9] so f(E)\f(G) = ∅ but
E\G = [−3,−2) and f(E\G) = (4, 9].

(b) Statement. If f : R → R is function of the real numbers such that x 6= y implies
f(x) 6= f(y) for all x, y ∈ R, then f is onto.

False. This is the definition of one-to-one, not onto. Let f : R → R be given

by f(z) =
x√

1 + x2
which is strictly increasing. Then x 6= y, say x < y, implies

f(x) < f(y) so the condition holds but f(R) = (−1, 1) 6= R so f is not onto.
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(c) Statement. Let x be a real number such that x > 0. Then there is a rational number
r ∈ Q such that 0 < r < x.

True. This follows from the Archimedean property of R. Given x > 0 there is n ∈ N
so that r =

1

n
< x. But r is rational.

4. Recall that the rational numbers are defined to be the set of equivalence classes Q = S/ ∼
where S =

{a
b

: a, b ∈ Z, b 6= 0
}

is the set of symbols (pairs of integers) and the symbols

are equivalent if they represent the same fraction:
a

b
∼ c

d
iff ad = bc. We denote the

equivalence class, the “fraction” by
[a
b

]
to distinguish it from a symbol from S. Addition

and multiplication of rationals, for example, is defined on equivalence classes by[m
n

]
+
[r
t

]
=

[
mt + nr

nt

]
,

[m
n

]
·
[r
t

]
=
[mr

nt

]
.

How is order

[
p

q

]
≥ 0 defined in the rationals? Explain what it means that

[
p

q

]
≥ 0 is well

defined. Is
√

5, the square root of 5 rational? Explain why or why not.

We say

[
p

q

]
≥ 0 whenever the symbol is equivalent to another symbol

p

q
∼ p′

q′
where p′ > 0

and p′ ≥ 0. Equivalently pq ≥ 0. This notion is well defined if whenever there is a symbol

in the same equivalence class
p

q
∼ p′′

q′′
, then

[
p

q

]
≥ 0 if and only if

[
p′′

q′′

]
≥ 0. In fact this

follows from the fact that
p

q
∼ p′

q′
and

p

q
∼ p′′

q′′
then

p′′

q′′
∼ p′

q′
.

No. To see
√

5 is not rational, we may argue in two ways.

The first way is to use the theorem in the text that says if x2 = k where k is an integer and
x is rational, then x is an integer. Thus if x were rational, then the solution of x2 = 5 is an
integr j. But the squares of the small integers j = 0,±1,±2,±3 are 0, 1, 4, 9, resp. And if
|j| > 3 then j2 > 9. It follows no square of x = j is 5, thus

√
5 cannot be rational.

The second way is the usual contradiction proof of irrationality. Assuming x =
√

5 =
p

q
is rational, after cancelling factors we may assume that p and q have no common factors.
Now x2 = 5 implies p2 = 5q2. But this says 5 divides p2. Since 5 is prime, 5 divides p and
we may write p = 5k for some integer k. Hence 25k2 = 5q2 or 5k2 = q2. Again this says 5
divides q2. But since 5 is prime, 5 divides q. So 5 is a factor of both p and q, contrary to
our assumption about p and q. We conclude that

√
5 could not have been rational.
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5. Let E ⊂ R be a set of real numbers. Find the least upper bound of E and prove your
assertion.

E =

{
2n − 1

2n
: n ∈ N

}
L = lubE = 1. To see this we have to show that L = 1 is an upper bound and that no
smaller number is an upper bound. For all n we have

2n − 1

2n
≤ 2n

2n
= 1,

so L = 1 is an upper bound for E.

Suppose that b < 1 to show that there is x ∈ E such that b < x, hence b is not an upper
bound. Since 1− b > 0, by the Archimidean Property, there is n0 ∈ N such that

1

n0
< 1− b.

On the other hand, we know that for all n ∈ N we have n < 2n. It follows for n = n0 that

x =
2n0 − 1

2n0
= 1− 1

2n0
> 1− 1

n0
> 1− (1− b) = b.

Thus we have x ∈ E such that b < x. Thus no number b < 1 is an upper bound for E so
L = 1 is the least upper bound of E..
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