Math 3210 § 2.	First Midterm Exam	Name:	Solutions
Treibergs		February 2	2, 2022.

1. Prove that for every natural number n

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$
(1)

Proof by induction.

In the base case n = 1 the left side and right sides are equal.

LHS =
$$\sum_{k=1}^{1} \frac{1}{k(k+1)} = \frac{1}{1 \cdot 2} = \frac{1}{2};$$
 RHS = $\frac{1}{1+1} = \frac{1}{2}.$

In the induction case, we assume that for some $n\in\mathbb{N}$ that

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$

Then for n + 1, using the induction hypothesis

$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \left(\sum_{k=1}^{n} \frac{1}{k(k+1)}\right) + \frac{1}{(n+1)(n+2)}$$
$$= \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$$
$$= \frac{n(n+2)+1}{(n+1)(n+2)}$$
$$= \frac{(n+1)^2}{(n+1)(n+2)}$$
$$= \frac{n+1}{(n+1)+1},$$

which is the statement for n+1. We conclude by induction that (1) holds for all $n \in \mathbb{N}$. \Box

[A1.]	(Commutativity of Addition)	x + y = y + x.
[A2.]	(Associativity of Addition)	x + (y + z) = (x + y) + z.
[A3.]	(Additive Identity)	$(\exists 0 \in \mathcal{F}) (\forall t \in \mathcal{F}) 0 + t = t.$
[A4.]	(Additive Inverse)	$(\exists -x \in \mathcal{F}) \ x + (-x) = 0.$
[M1.]	(Commutativity of Multiplication)	xy = yx.
[M2.]	(Associativity of Multiplication)	x(yz) = (xy)z.
[M3.]	(Multiplicative Identity)	$(\exists 1 \in \mathcal{F}) \ 1 \neq 0 \text{ and } (\forall t \in \mathcal{F}) \ 1t = t.$
[M4.]	(Multiplicative Inverse)	If $x \neq 0$ then $(\exists x^{-1} \in \mathcal{F}) (x^{-1})x = 1$.
[D.]	(Distributivity)	x(y+z) = xy + xz.

2. Recall the axioms of a field $(\mathcal{F}, +, \times)$. For any $x, y, z \in \mathcal{F}$,

Using only the field axioms, show that for any $a \in \mathcal{F}$ the additive inverse -a is unique. Justify every step of your argument using just the axioms listed here. Do not quote any formulas from the text.

We suppose that there are two additive inverses for some $a \in \mathcal{F}$, call them -a and w and argue they must be the same number. Both satisfy axiom (A3), namely

$$a + (-a) = 0$$
 and $a + w = 0$.

Both expressions equal zero, thus they equal each other.

a + (-a) = a + w	Both expressions are equal.
(-a) + a = w + a	Commutativity of addition. (A2)
((-a) + a) + (-a) = (w + a) + (-a)	Additive inverse: there is a $(-a)$ such that
	a + (-a) = 0. Post-add it to both sides. (A4)
(-a) + (a + (-a)) = w + (a + (-a))	Associativity of addition. (A2)
(-a) + 0 = w + 0	Additive inverse. (A4)
0 + (-a) = 0 + w	Commutivity of addition. (A1)
-a = w	Additive identity. (A3)

We conclude that the two additive inverses are equal. Thus the additive invere is unique.

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) STATEMENT. Let $f : A \to B$ and $E, G \subset A$. Then $f(E) \setminus f(G) = f(E \setminus G)$. FALSE. The equality holds if and only if f is one-to-one. A counterexample is given by any not one-to-one function, such as $f : \mathbf{R} \to \mathbf{R}$ given by $f(x) = x^2$. Let $E = [-3, -2) \cup (2, 3]$ and G = (2, 3]. Then f(E) = f(G) = (4, 9] so $f(E) \setminus f(G) = \emptyset$ but $E \setminus G = [-3, -2)$ and $f(E \setminus G) = (4, 9]$.
 - (b) STATEMENT. If f: R → R is function of the real numbers such that x ≠ y implies f(x) ≠ f(y) for all x, y ∈ R, then f is onto.
 FALSE. This is the definition of one-to-one, not onto. Let f : R → R be given by f(z) = x/(√(1+x^2)) which is strictly increasing. Then x ≠ y, say x < y, implies f(x) < f(y) so the condition holds but f(R) = (-1,1) ≠ R so f is not onto.

- (c) STATEMENT. Let x be a real number such that x > 0. Then there is a rational number $r \in \mathbb{Q}$ such that 0 < r < x. TRUE. This follows from the Archimedean property of **R**. Given x > 0 there is $n \in \mathbb{N}$ so that $r = \frac{1}{n} < x$. But r is rational.
- 4. Recall that the rational numbers are defined to be the set of equivalence classes $\mathbb{Q} = S/\sim$ where $S = \left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\right\}$ is the set of symbols (pairs of integers) and the symbols are equivalent if they represent the same fraction: $\frac{a}{b} \sim \frac{c}{d}$ iff ad = bc. We denote the equivalence class, the "fraction" by $\left[\frac{a}{b}\right]$ to distinguish it from a symbol from S. Addition and multiplication of rationals, for example, is defined on equivalence classes by

$$\left[\frac{m}{n}\right] + \left[\frac{r}{t}\right] = \left[\frac{mt + nr}{nt}\right], \qquad \left[\frac{m}{n}\right] \cdot \left[\frac{r}{t}\right] = \left[\frac{mr}{nt}\right]$$

How is order $\left[\frac{p}{q}\right] \ge 0$ defined in the rationals? Explain what it means that $\left[\frac{p}{q}\right] \ge 0$ is well defined. Is $\sqrt{5}$, the square root of 5 rational? Explain why or why not. We say $\left[\frac{p}{q}\right] \ge 0$ whenever the symbol is equivalent to another symbol $\frac{p}{q} \sim \frac{p'}{q'}$ where p' > 0 and $p' \ge 0$. Equivalently $pq \ge 0$. This notion is well defined if whenever there is a symbol in the same equivalence class $\frac{p}{q} \sim \frac{p''}{q''}$, then $\left[\frac{p}{q}\right] \ge 0$ if and only if $\left[\frac{p''}{q''}\right] \ge 0$. In fact this follows from the fact that $\frac{p}{q} \sim \frac{p'}{q'}$ and $\frac{p}{q} \sim \frac{p''}{q''}$ then $\frac{p''}{q''} \sim \frac{p'}{q'}$.

No. To see $\sqrt{5}$ is not rational, we may argue in two ways.

The first way is to use the theorem in the text that says if $x^2 = k$ where k is an integer and x is rational, then x is an integer. Thus if x were rational, then the solution of $x^2 = 5$ is an integr j. But the squares of the small integers $j = 0, \pm 1, \pm 2, \pm 3$ are 0, 1, 4, 9, resp. And if |j| > 3 then $j^2 > 9$. It follows no square of x = j is 5, thus $\sqrt{5}$ cannot be rational.

The second way is the usual contradiction proof of irrationality. Assuming $x = \sqrt{5} = \frac{p}{q}$ is rational, after cancelling factors we may assume that p and q have no common factors. Now $x^2 = 5$ implies $p^2 = 5q^2$. But this says 5 divides p^2 . Since 5 is prime, 5 divides p and we may write p = 5k for some integer k. Hence $25k^2 = 5q^2$ or $5k^2 = q^2$. Again this says 5 divides q^2 . But since 5 is prime, 5 divides q. So 5 is a factor of both p and q, contrary to our assumption about p and q. We conclude that $\sqrt{5}$ could not have been rational. 5. Let $E \subset \mathbb{R}$ be a set of real numbers. Find the least upper bound of E and prove your assertion.

$$E = \left\{ \frac{2^n - 1}{2^n} : n \in \mathbb{N} \right\}$$

L = lub E = 1. To see this we have to show that L = 1 is an upper bound and that no smaller number is an upper bound. For all n we have

$$\frac{2^n - 1}{2^n} \le \frac{2^n}{2^n} = 1,$$

so L = 1 is an upper bound for E.

Suppose that b < 1 to show that there is $x \in E$ such that b < x, hence b is not an upper bound. Since 1 - b > 0, by the Archimidean Property, there is $n_0 \in \mathbb{N}$ such that

$$\frac{1}{n_0} < 1 - b.$$

On the other hand, we know that for all $n \in \mathbb{N}$ we have $n < 2^n$. It follows for $n = n_0$ that

$$x = \frac{2^{n_0} - 1}{2^{n_0}} = 1 - \frac{1}{2^{n_0}} > 1 - \frac{1}{n_0} > 1 - (1 - b) = b.$$

Thus we have $x \in E$ such that b < x. Thus no number b < 1 is an upper bound for E so L = 1 is the least upper bound of E.