
Math 3210 § 3.
Treibergs

Third Midterm Exam Name: Solutions
November 10, 2021

1. Let I ⊂ R be an interval and f : I → R. State the definition: f(x) is continuous on I.

Using just your definition from (a) and not the combinations theorem, prove that f(x) =
1

x2
is continuous on I = (0, 1).

f is said to be continuous on I if for all a ∈ I and for all ε > 0 there is a δ > 0 such that

|f(x)− f(a)| < ε whenever x ∈ I and |x− a| < δ.

Choose an a ∈ I and an ε > 0. Let δ = min

{
a

2
,
a3ε

10

}
. Then for any x ∈ I such that

|x− a| < δ we have

x = a+ (x− a) ≥ a− |x− a| > a− δ ≥ a− a

2
=

1

2
a.

and

x = a+ (x− a) ≤ x+ |x− a| ≤ a+ δ ≤ a+
a

2
=

3

2
a.

These inequalities imply

|f(x)− f(a)| =
∣∣∣∣ 1

x2
− 1

a2

∣∣∣∣ =
|x2 − a2|
x2a2

=
(x+ a) |x− a|

x2a2

≤
( 3
2a+ a) |x− a|

1
4a

2 · a2
=

10 |x− a|
a3

<
10 δ

a3
≤ 10

a3
· a

3ε

10
= ε.

This proves f(x) is continuous on I. Note that δ must not depend on x but may depend
on both ε and a as it does here.

2. Let I ⊂ R be an open interval and f : I → R. State the definition: f(x) is differentiable at
a ∈ I. Using just your definition of derivative and properties of limits of functions, prove
carefully that if f : I → R is differentiable at a ∈ I and f(a) > 0 then g(x) =

√
f(x) is

differentiable at a ∈ I and find g′(a).

f : I → R is said to be differentiable at a ∈ I if the limit

f ′(a) = lim
x→a

f(x)− f(a)

x− a

exists and equals some f ′(a) ∈ R.

We assume that f(x) is differentiable at a ∈ I. That means

f ′(a) = lim
x→a

f(x)− f(a)

x− a

exists where f ′(a) ∈ R. Now we compute the limit of the difference quotient for g(x) at
z ∈ I.

lim
x→a

g(x)− g(a)

x− a
= lim
x→a

√
f(x)−

√
f(a)

x− a
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Since f(x) is differentiable at a it is continuous at a. Since f(a) > 0, for every x close
enough to a we also have f(x) > 0. Thus we may rationalize the numerator since we do
not divide by zero

lim
x→a

√
f(x)−

√
f(a)

x− a
= lim
x→a

(√
f(x)−

√
f(a)

)(√
f(x) +

√
f(a)

)
(x− a)

(√
f(x) +

√
f(a)

)
= lim
x→a

f(x)− f(a)

(x− a)
· 1(√

f(x) +
√
f(a)

)
= lim
x→a

f(x)− f(a)

(x− a)
· lim
x→a

1(√
f(x) +

√
f(a)

)
= f ′(a) · 1(√

f(a) +
√
f(a)

) =
f ′(a)

2
√
f(a)

,

where we have used the fact that the limit of a product is the product of limits and the
limit of a quotient is the quotient of limits provided that the denominator is nonzero. Hence
g(x) is differentiable at a ∈ I and the derivative is as expected from the chain rule.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) If f is differentiable on the bounded open interval (a, b) and satisfies |f ′(x)| ≤ 100 for
all x ∈ (a, b) then f is uniformly continuous.

True. We can show using the mean Value theorem that f is 100-Lipschitz, hence
uniformly continuous. For any x, y ∈ I, say x < y, we have f continuous on [x, y]
and differentiable on (x, y) because it is differentiable on [x, y] ⊂ (a, b). Hence, by the
Mean Value Theorem, there is a c ∈ (x, y) such that

f(x)− x(y) = f ′(c) (x− y).

Taking absolute values

|f(x)− x(y)| = |f ′(c)| |x− y| ≤ 100 |x− y|.

(b) There is a positive real number c such that c = tan c.

True. Let g(x) = tanx−x which is continuous on the interval
(
π
2 ,

3π
2

)
. Since tangent

tends to −∞ as x→ π
2 + and to +∞ as x→ 3π

2 −, there are π
2 < a < b < 3π

2 such that
g(a) < 0 and g(b) > 0. Thus by the Intermediate Value Theorem, there is c ∈ (a, b)
such that g(c) = 0.

(c) Let f, g : (1, 2) → R be differentiable functions such that g(x) 6= 0 and g′(x) 6= 0 for
all x ∈ (1, 2) and such that lim

x→1+
f(x) = lim

x→1+
g(x) exist and are equal.

If L = lim
x→1+

f ′(x)

g′(x)
exists then lim

x→1+

f(x)

g(x)
exists and equals L.

False. L’Hopital’s Rule does not apply since we have not specified that the limit is is
of “ 0

0” or “∞∞” type. Thus if we pick two functions f(x) = 2x and g(x) = 1 + x which
are differentiable on (1, 2) and g(x) and g′(x) are nonzero on (0, 1) for which the limits
both exist

L = lim
x→1+

f ′(x)

g′(x)
= lim
x→1+

2

1
= 2

but

lim
x→1+

f(x)

g(x)
= lim
x→1+

2x

1 + x
= 1.
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4. Let I ⊂ R be a closed and bounded interval and f, fn : I → R be functions. State the
definitions:

(a) {fn(x)} converges pointwise to a function f on I as n→∞.

(a) {fn(x)} converges uniformly to a function f on I as n→∞.

Determine whether the functions fn(x) = x1/n converge pointwise or uniformly to a function
f(x) on the interval I = [0, 1] and prove your result.

{fn(x)} converges pointwise to a function f on I as n→∞ if for all a ∈ I, limn→∞ fn(a) =
f(a). In other words, for all a ∈ I and all ε > 0 there is an N ∈ R such that

|fn(a)− f(a)| < ε whenever n > N .

{fn(x)} converges uniformly to a function f on I as n → ∞ if for all ε > 0 there is an
N ∈ R such that

|fn(a)− f(a)| < ε whenever a ∈ I and n > N .

Note that for fn(x) = x1/n we have fn(0) = 0 for all n which tends to f(0) = 0. If x > 0
then fn(x) tends to one as n→∞. Thus the functions converge to the pointwise limit

f(x) =

{
0, if x = 0;

1, if x > 0.

The convergence is not uniform. If we take the sequence xn = 2−n ∈ I then fn(xn) = 1
2 for

all n. Thus

|fn(xn)− f(xn)| =
∣∣∣∣12 − 1

∣∣∣∣ =
1

2

which does not tend to zero, which it must do if the convergence were uniform. Or one
could observe that f is a discontinuous limit of continuous functions, which is impossible
if the convergence were uniform. Another proof may involve showing that the negation of
uniform convergence holds.

Note that the inverse functions are f−1n (y) = yn for y ∈ I, making fn easy to graph. This is
the standard example of a pointwise convergent sequence that is not uniformly convergent.

5. For the bounded sequence {bn}, let

Sn = b0 +
b1
2

+
b2
22

+ · · ·+ bn
2n

=

n∑
k=0

bk
2k
.

Define: {Sn} is a Cauchy Sequence. Show that there is an L ∈ R such that Sn → L as
n→∞.

{Sn} is said to be a Cauchy Sequence if for every ε > 0 there is an N ∈ R such that

|Sp − Sq| < ε whenever p > N and q > N .

We show that the given sequence {Sn} is a Cauchy Sequence, hence Sn → L converges to
an L ∈ R as n→∞.

Because {bn} is bounded, there is an M ∈ R such that |bn| ≤ M for all n. Choose ε > 0.
Let N ∈ R satisfy M2−N < ε. Then for any p, q ∈ N such that p > N and q > N we may
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suppose that p > q. If p = q then |Sp − Sq| = 0 < ε. If p < q then we may swap the roles
of p and q in the proof. Then by the triangle inequality,

|Sp − Sq| =

∣∣∣∣∣
p∑
k=0

bk
2k
−

q∑
k=0

bk
2k

∣∣∣∣∣ =

∣∣∣∣∣∣
p∑

k=q+1

bk
2k

∣∣∣∣∣∣ ≤
p∑

k=q+1

|bk|
2k
≤M

p∑
k=q+1

1

2k

=
M

2q+1

p−q−1∑
k=0

1

2k
=

M

2q+1
·

1−
(
1
2

)p−q
1− 1

2

≤ M

2q
≤ M

2N
< ε.

This shows that {Sn} is a Cauchy sequence, thus convergent.
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