
Math 3210 § 3.
Treibergs

Second Midterm Exam Name: Solutions
October 6, 2021

1. Let f : R → R be a real valued function defined on the reals. Define: M = sup
R

f . Let

g(x) =
x2

1 + x2
. Find M = sup

R
g and prove your result.

Let f : R→ R be a real function and M ∈ R. If f is not bounded above we say sup
R

f =∞.

If f is bounded above then we say sup
R

f = M where M is a real number such that (1)

f(x) ≤M for all x ∈ R and (2) for every s < M there is an x ∈ R such that f(x) > s.

We claim sup
R

x2

1 + x2
= 1. To see (1) that M = 1 is an upper bound, we have

g(x) =
x2

1 + x2
= 1− 1

1 + x2
≤ 1− 0 = 1

for all x ∈ R. To see (2) that no smaller number is an upper bound, choose s < 1. If s > 0
let x = 2(1− s)−1/2. Then

g(x) = 1− 1

1 + x2
> 1− 1

x2
= 1− 1

4
(1− s) =

3

4
+

s

4
> s.

If s ≤ 0 let x = 1. In this case g(x) = 1
2 > 0 ≥ s. In either case, there is x ∈ R such that

g(x) > s, proving (2) holds as well.

2. Let {xn} be a real sequence and L a real number. Define: L = lim
n→∞

xn. Using just your

definition, determine whether the limit L = lim
n→∞

n− 2

3n− 4
exists and prove your answer.

For the real sequence {xn} and real number L we say L = lim
n→∞

xn if for every ε > 0 there

is an N ∈ R such that
|xn − L| < ε whenever n > N .

We claim lim
n→∞

n− 2

3n− 4
=

1

3
. To see it, choose ε > 0. Let N = max{4, 1

3ε}. Then for

every n ∈ N such that n > N we have

|xn − L| =
∣∣∣∣ n− 2

3n− 4
− 1

3

∣∣∣∣ =

∣∣∣∣3(n− 2)− (3n− 4)

3(3n− 4)

∣∣∣∣ =

∣∣∣∣ −2

3(3n− 4)

∣∣∣∣ =
2

3(3n− 4)

≤ 2

3(3n− n)
=

1

3n
<

1

3N
≤ 1

3[1/(3ε)]
= ε,

using 3n− 4 > 3n− n > 0 since n > 4 and using N ≥ 1
3ε .
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3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Let {xn} be a real sequence such that xn+1 > xn for all n. Then lim
n→∞

xn =∞.

False. The sequence xn = − 1

n
is strictly increasing and bounded above by 0.

(b) Let {xn} be a convergent sequence such that every xn is rational. Then the limit
lim
n→∞

xn must be rational.

False. The rational sequence constructed in class and in the text from Newton’s
Method to find the positive root of f(x) = x2 − 2, namely given recursively by x1 = 3

and xn+1 =
x2
n + 2

2xn
is a monotonically decreasing sequence that is bounded below

and converges to
√

2, which is irrational. Another example is the sequence of rational
partial sums that converge to the irrational number e:

yn =
1

0!
+

1

1!
+

1

2!
+ · · ·+ 1

n!
.

A third example is gotten by taking the the truncations of the decimal expansion of
an irrational number, e.g.,

z1 = 1.4

z2 = 1.41

z3 = 1.414

z4 = 1.4142

z5 = 1.41421

z6 = 1.414213

z7 = 1.4142135

...

(c) There is no injective function from the real numbers to the rational numbers.

True. If there were an injective function f : R→ Q then R would be dominated by
Q (R 4 Q) or the cardinality of Q is at least as large as the cardinality of R, which is
false, since Q is countable whereas R is uncountable.
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4. Let {ab} and {bn} be two real sequences that converge to real numbers a and b:

a = lim
n→∞

an, b = lim
n→∞

bn.

Using just the definition of convergence (and not the Main Limit Theorem), prove that the
sequence {an|bn|} converges and

a|b| = lim
n→∞

an|bn|.

The proof is like proving that the limit of a product is the product of a limit. Since {bn}
is convergent, then it is bounded: there is an M ∈ R such that |bn| ≤M for all n. Choose
ε > 0. By the convergencce of {ab} and {bn} there are N1, N2 ∈ R such that

|an − a| < ε

2M + 1
whenever n > N1 and

|bn − b| < ε

2|a|+ 1
whenever n > N2.

Let N = max{N1, N2}. For any n ∈ N such that n > N we have∣∣an|bn| − a|b|
∣∣ =

∣∣an|bn| − a|bn|+ a|bn| − a|b|
∣∣

≤
∣∣an|bn| − a|bn|

∣∣ +
∣∣a|bn| − a|b|

∣∣ Use Triangle Inequality

=
∣∣(an − a)|bn|

∣∣ +
∣∣a(|bn| − |b|)

∣∣
= |an − a| |bn|+ |a|

∣∣|bn| − |b|∣∣
≤ |an − a|M + |a| |bn − b| Use |bn| ≤M and Reverse Triangle Ineq.

≤ ε

2M + 1
M + |a| ε

2|a|+ 1

<
ε

2
+

ε

2
= ε.

5. Let 0 < a < 1 and define the sequence {xn} recursively by x1 = 0 and

xn+1 = 1− a

1 + xn
.

Prove that {xn} is bounded above. Prove that {xn} is strictly increasing. Is {xn} conver-
gent? Why? If xn → L as n→∞, what is L?

First we observe that xn ≥ 0 for all n. We see this by an induction argument: x1 = 0 ≥ 0
by prescription. Assuming xn ≥ 0 we get

xn+1 = 1− a

1 + xn
≥ 1− a

1 + 0
= 1− a > 0.

Second we observe each term is bounded above by one: for every n,

xn+1 = 1− a

1 + xn
< 1− 0 = 1

since xn ≥ 0 implies
a

1 + xn
> 0.

Third we show xn is strictly increasing by induction. For the base case,

x2 = 1− a

1 + x1
= 1− a

1 + 0
= 1− a > 0 = x1.
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For the induction case, assume xn+1 − xn > 0 for some n. Then

xn+2 − xn+1 =

(
1− a

1 + xn+1

)
−
(

1− a

1 + xn

)
=

a

1 + xn
− a

1 + xn+1

=
a(1 + xn+1 − 1− xn)

(1 + xn)(1 + xn+1)

=
a(xn+1 − xn)

(1 + xn)(1 + xn+1)
> 0

by the induction hypothesis and positivity of the denominator. Thus we have shown by
induction that xn+1 > xn for all n: {xn} is strictly increasing.

Thus {xn} is a increasing sequence which is bounded above. By the Monotone Convergence
Theorem, the limit exists: xn → L as n→∞, where L is a real number. To find L we take
the recursion formula

xn+1 = 1− a

1 + xn

to the limit. The left side is a subsequence and the right converges by the Main Limit
Theorem.

L = 1− a

1 + L

Hence
a = (1− L)(1 + L) = 1− L2

so, since L ≥ xn ≥ 0,
L = +

√
1− a.
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