Math 3210 § 2.	Second Midterm Exam	Name: Solutions
Treibergs		February 19, 2020

1. Let $A = \{x \in \mathbb{Q} : x^2 - 2x < 8\}$, where \mathbb{Q} denotes the rational numbers. Define: M is the least upper bound of A. Show that A is nonempty. Show that A is bounded above. Find the least upper bound of A and prove your result.

Let A be a nonempty subset of the real numbers which is bounded above. Then the real number M is the *least upper bound of* A if (1) it is an upper bound $(\forall a \in A)(a \leq M)$, and (2) it is the least of all upper bounds, that is, no smaller number is an upper bound $(\forall x < M)(\exists a \in A)(x < a)$.

Let $f(x) = x^2 - 2x - 8 = (x - 4)(x + 2)$. Then the condition to be in A is that x be rational and f(x) < 0. A is nonempty because the number $0 \in A$: 0 is rational and f(0) = -8 < 0. 4 is an upper bound for A. If x > 4 we show $x \notin A$ so that whatever is left in A is at most four. If x > 4 then x - 4 > 0 and x + 2 > 0 so their product f(x) > 0, thus $x \notin A$.

We claim that 4 is also the least upper bound. We showed it is an upper bound. To show there is no smaller upper bound, suppose x < 4. Then $\max(-2, x) < 4$. By the density of rationals, there is $a \in \mathbb{Q}$ such that $\max(-2, x) < a < 4$. Then a - 4 < 0 and a + 2 > 0 so their product f(a) < 0 so $a \in A$. Thus there exists $a \in A$ such that x < a, thus x is not a lower bound.

2. Recall the axioms of a field $(\mathcal{F}, +, \times)$. For any $x, y, z \in \mathcal{F}$,

[A1.]	(Commutativity of Addition)	x + y = y + x.
[A2.]	(Associativity of Addition)	x + (y + z) = (x + y) + z.
[A3.]	(Additive Identity)	$(\exists 0 \in \mathcal{F}) \ (\forall t \in \mathcal{F}) \ 0 + t = t.$
[A4.]	(Additive Inverse)	$(\exists -x \in \mathcal{F}) \ x + (-x) = 0.$
[M1.]	(Commutativity of Multiplication)	xy = yx.
[M2.]	(Associativity of Multiplication)	x(yz) = (xy)z.
[M3.]	(Multiplicative Identity)	$(\exists 1 \in \mathcal{F}) \ 1 \neq 0 \text{ and } (\forall t \in \mathcal{F}) \ 1t = t.$
[M4.]	(Multiplicative Inverse)	If $x \neq 0$ then $(\exists x^{-1} \in \mathcal{F}) (x^{-1})x = 1$.
[D.]	(Distributivity)	x(y+z) = xy + xz.

Using only the field axioms, show that for any $a, b, c \in \mathcal{F}$ such that $a \neq 0$ there is at most one solution x to the equation

$$a(x+b) = c$$

Justify every step of your argument using just the axioms listed here.

Suppose there exist two solutions x and y. Since they are both solutions, they satisfy a(x+b) = c and a(y+b) = c.

a(x+b) = a(y+b)	Both equal c .
$a^{-1}[a(x+b)] = a^{-1}[a(y+b)]$	$a \neq 0$ so there is a^{-1} by M4. Pre-multiply by a^{-1} .
$[a^{-1}a](x+b) = [a^{-1}a](y+b)$	M2.
$[aa^{-1}](x+b) = [aa^{-1}](y+b)$	M1.
1(x+b) = 1(y+b)	M4.
x + b = y + b	M3.
(x+b) + (-b) = (y+b) + (-b)	By A4 there is $-b$. Post-add $-b$.
x + [b + (-b)] = y + [b + (-b)]	A2.
x + 0 = y + 0	A4.
0 + x = 0 + y	A1.
x = y	A3.

We have shown x = y, hence all solutions have to be the same.

Not asked in this problem is whether there exist any solutions. A formula for the solution may be found by solving for x, or by guessing x and checking that it solves the problem.

a(x+b) = c	The equation.
$a^{-1}[a(x+b)] = a^{-1}c$	$a \neq 0$ so there is a^{-1} by M4. Pre-multiply by a^{-1} .
$[a^{-1}a](x+b) = a^{-1}c$	M2.
$[aa^{-1}](x+b) = a^{-1}c$	M1.
$1(x+b) = a^{-1}c$	M4.
$x + b = a^{-1}c$	M3.
$(x + b) + (-b) = (a^{-1}c) + (-b)$	By A4 there is $-b$. Post-add $-b$.
$x + [b + (-b)] = (a^{-1}c) + (-b)$	A2.
$x + 0 = (a^{-1}c) + (-b)$	A4.
$0 + x = (a^{-1}c) + (-b)$	A1.
$x = (a^{-1}c) + (-b)$	A3.

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) STATEMENT. In an ordered field, if $xz \ge yz$ and z > 0 then $x \ge y$. TRUE. Since z > 0 we have $z \ne 0$ so z^{-1} exists and $z \ge 0$ implies $z^{-1} \ge 0$. (If not, $z^{-1} < 0$ so multiplying by $z \ge 0$ gives $1 = zz^{-1} = (z^{-1})z \le 0z^{-1} = 0$ contrary to 1 > 0.) Hence the inequality is preserved upon multiplying by z^{-1} . It gives $(xz)z^{-1} \ge (yz)z^{-1}$ which implies $x = 1x = x1 = x(zz^{-1}) = (xz)z^{-1} \ge (yz)z^{-1} = y(zz^{-1}) = y1 = 1y = y$.
 - (b) STATEMENT. Let $\{x_n\}$ be a convergent sequence such that every x_n is irrational. Then the limit $\lim_{n \to \infty} x_n$ is irrational.

FALSE. Let $x_n = \frac{\sqrt{2}}{n}$. Then x_n is irrational as it is the product of rational $\frac{1}{n}$ and irrational $\sqrt{2}$, but $x_n \to 0$ as $n \to \infty$, where the limit, 0, is rational.

- (c) STATEMENT. Let f and g be two real valued functions defined for all reals such that $\sup_{\mathbf{R}} f = \sup_{\mathbf{R}} g = 1$. Then $\sup_{\mathbf{R}} (f+g) = 2$. FALSE. Let $f(x) = \begin{cases} \sin x, & \text{if } x \ge 0; \\ 0, & \text{if } x < 0. \end{cases}$ and $g(x) = \begin{cases} 0, & \text{if } x \ge 0; \\ \sin x, & \text{if } x < 0. \end{cases}$. Then $f(\mathbf{R}) = g(\mathbf{R}) = [-1,1]$ so $\sup_{\mathbf{R}} f = \sup_{\mathbf{R}} g = 1$. But $(f+g)(x) = \sin x$ so $(f+g)(\mathbf{R}) = [-1,1]$ and $\sup_{\mathbf{R}} (f+g) = 1 \ne 2$.
- 4. Recall that the rational numbers are defined to be the set of equivalence classes $\mathbb{Q} = S/\sim$ where $S = \left\{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\right\}$ is the set of symbols (pairs of integers) and the symbols are equivalent if they represent the same fraction $\frac{a}{b} \sim \frac{c}{d}$ iff ad = bc. We denote the equivalence class, the "fraction," $\left[\frac{a}{b}\right]$ to distinguish it from a symbol from S. Given fractions $x, y \in \mathbb{Q}$, how should addition x + y and multiplication be xy defined to make \mathbb{Q} a field? You don't need to check that these are well defined nor that the axioms of a field are satisfied. Suppose we wish to define the function $f : \mathbb{Q} \to \mathbb{Q}$ by $f\left(\left[\frac{a}{b}\right]\right) = \left[\frac{a^2}{a^2 + b^2}\right]$.

Is f well defined? Why or why not? State the Completeness Axiom for an ordered field \mathcal{F} . Do the rational numbers \mathbb{Q} satisfy the Completeness Axiom? Why or why not?

Addition and multiplication are defined for arbitrary $\begin{bmatrix} a \\ \overline{b} \end{bmatrix}, \begin{bmatrix} c \\ \overline{d} \end{bmatrix} \in \mathbb{Q}$ by

$$\begin{bmatrix} \frac{a}{b} \end{bmatrix} + \begin{bmatrix} \frac{c}{d} \end{bmatrix} = \begin{bmatrix} \frac{ad+bc}{bd} \end{bmatrix}, \qquad \begin{bmatrix} \frac{a}{b} \end{bmatrix} \begin{bmatrix} \frac{c}{d} \end{bmatrix} = \begin{bmatrix} \frac{ac}{bd} \end{bmatrix}.$$

One then checks this addition and multiplication are well defined and with these, \mathbb{Q} satisfies the field axioms.

To show that f is well defined we need to show that if $\frac{a}{b} \sim \frac{c}{d}$ then $f\left(\left[\frac{a}{b}\right]\right) = f\left(\left[\frac{c}{d}\right]\right)$ which is the same as $\frac{a^2}{a^2 + b^2} \sim \frac{c^2}{c^2 + d^2}$. But $\frac{a}{b} \sim \frac{c}{d}$ holds if ad = bc. Now using this we see that $(c^2 + d^2)a^2 = a^2c^2 + a^2d^2 = a^2c^2 + b^2c^2 = (a^2 + b^2)c^2$ which says $\frac{a^2}{a^2 + b^2} \sim \frac{c^2}{c^2 + d^2}$. The ordered field \mathcal{F} satisfies the completeness axiom if every nonempty set of \mathcal{F} which is

bounded above has a least upper bound in \mathcal{F} .

The rationals are not complete. The set $A = \{x \in \mathbb{Q} : x^2 < 2\}$ is bounded above, (say by 3 since if x > 3 then $x^2 > 9 > 2$ so $x \notin A$, hence members of A are at most 3). The least upper bound would have to be $\sqrt{2}$, but $\sqrt{2}$ is not rational.

In fact we showed that if q > 0 is a rational upper bound for A so $q^2 > 2$ then $\tilde{q} = 1/q + q/2$ is rational, $0 < \tilde{q} < q$ but $(\tilde{q})^2 > 2$ so \tilde{q} is a strictly smaller upper bound for A. Similarly, if r > 0 is rational such that $r^2 < 2$ then $\tilde{r} = 4r/(2+r^2)$ is rational, $(\tilde{r})^2 < 2$ and $r < \tilde{r}$ so that for any $r \in A$ there is a strictly greater $\tilde{r} \in A$. Thus the positive least upper bound must be smaller that any rational such that $q^2 > 2$ and larger than any rational such that $r^2 < 2$. Hence the least upper bound would satisfy $x^2 = 2$, but there is no such rational. ()

5. Let $\{x_n\}$ be a real sequence and L a real number. Define: $L = \lim_{n \to \infty} x_n$. Using just your definition, determine whether the limit $L = \lim_{n \to \infty} \frac{n^2 + n}{n^2 - 7}$ exists and prove your answer. The sequence is said to tend to a limit, $L = \lim_{n \to \infty} x_n$, if for every $\varepsilon > 0$ there is an $N \in \mathbf{R}$ such that

$$|x_n - L| < \varepsilon$$
 whenever $n > N$.

We claim $1 = \lim_{n \to \infty} \frac{n^2 + n}{n^2 - 7}$. To prove it, choose $\varepsilon > 0$. Let $N = \frac{16}{\varepsilon} + 4$. For any $n \in \mathbb{N}$ such that n > N we have n > 4 so $n^2 - 7 > 0$, 7n > 7 and $\frac{1}{2}n^2 > 7$. Thus

$$\begin{aligned} |x_n - L| &= \left| \frac{n^2 + n}{n^2 - 7} - 1 \right| = \left| \frac{n^2 + n}{n^2 - 7} - \frac{n^2 - 7}{n^2 - 7} \right| = \left| \frac{n + 7}{n^2 - 7} \right| = \frac{n + 7}{n^2 - 7} \\ &\leq \frac{n + 7n}{n^2 - \frac{1}{2}n^2} = \frac{8n}{\frac{1}{2}n^2} = \frac{16}{n} < \frac{16}{N} = \frac{16}{\frac{16}{\varepsilon} + 4} = \frac{16\varepsilon}{16 + 4\varepsilon} < \frac{16\varepsilon}{16} = \varepsilon. \end{aligned}$$