
Math 3210 § 2.
Treibergs

Second Midterm Exam Name: Solutions
February 19, 2020

1. Let A =
{
x ∈ Q : x2 − 2x < 8

}
, where Q denotes the rational numbers. Define: M is the

least upper bound of A. Show that A is nonempty. Show that A is bounded above. Find the
least upper bound of A and prove your result.

Let A be a nonempty subset of the real numbers which is bounded above. Then the real
number M is the least upper bound of A if (1) it is an upper bound (∀a ∈ A)(a ≤ M),
and (2) it is the least of all upper bounds, that is, no smaller number is an upper bound
(∀x < M)(∃a ∈ A)(x < a).

Let f(x) = x2−2x−8 = (x−4)(x+ 2). Then the condition to be in A is that x be rational
and f(x) < 0. A is nonempty because the number 0 ∈ A: 0 is rational and f(0) = −8 < 0.

4 is an upper bound for A. If x > 4 we show x /∈ A so that whatever is left in A is at most
four. If x > 4 then x− 4 > 0 and x + 2 > 0 so their product f(x) > 0, thus x /∈ A.

We claim that 4 is also the least upper bound. We showed it is an upper bound. To show
there is no smaller upper bound, suppose x < 4. Then max(−2, x) < 4. By the density of
rationals, there is a ∈ Q such that max(−2, x) < a < 4. Then a − 4 < 0 and a + 2 > 0 so
their product f(a) < 0 so a ∈ A. Thus there exists a ∈ A such that x < a, thus x is not a
lower bound.

2. Recall the axioms of a field (F ,+,×). For any x, y, z ∈ F ,

[A1.] (Commutativity of Addition) x + y = y + x.

[A2.] (Associativity of Addition) x + (y + z) = (x + y) + z.

[A3.] (Additive Identity) (∃ 0 ∈ F) (∀ t ∈ F) 0 + t = t.

[A4.] (Additive Inverse) (∃−x ∈ F) x + (−x) = 0.

[M1.] (Commutativity of Multiplication) xy = yx.

[M2.] (Associativity of Multiplication) x(yz) = (xy)z.

[M3.] (Multiplicative Identity) (∃ 1 ∈ F) 1 6= 0 and (∀ t ∈ F) 1t = t.

[M4.] (Multiplicative Inverse) If x 6= 0 then (∃x−1 ∈ F) (x−1)x = 1.

[D.] (Distributivity) x(y + z) = xy + xz.

Using only the field axioms, show that for any a, b, c ∈ F such that a 6= 0 there is at most
one solution x to the equation

a(x + b) = c.

Justify every step of your argument using just the axioms listed here.

Suppose there exist two solutions x and y. Since they are both solutions, they satisfy
a(x + b) = c and a(y + b) = c.
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a(x + b) = a(y + b) Both equal c.

a−1[ a(x + b)] = a−1[ a(y + b)] a 6= 0 so there is a−1 by M4. Pre-multiply by a−1.

[ a−1a](x + b) = [ a−1a](y + b) M2.

[ aa−1](x + b) = [ aa−1](y + b) M1.

1(x + b) = 1(y + b) M4.

x + b = y + b M3.

(x + b) + (−b) = (y + b) + (−b) By A4 there is −b. Post-add −b.
x + [b + (−b)] = y + [b + (−b)] A2.

x + 0 = y + 0 A4.

0 + x = 0 + y A1.

x = y A3.

We have shown x = y, hence all solutions have to be the same.

Not asked in this problem is whether there exist any solutions. A formula for the solution
may be found by solving for x, or by guessing x and checking that it solves the problem.

a(x + b) = c The equation.

a−1[ a(x + b)] = a−1c a 6= 0 so there is a−1 by M4. Pre-multiply by a−1.

[ a−1a](x + b) = a−1c M2.

[ aa−1](x + b) = a−1c M1.

1(x + b) = a−1c M4.

x + b = a−1c M3.

(x + b) + (−b) = (a−1c) + (−b) By A4 there is −b. Post-add −b.
x + [b + (−b)] = (a−1c) + (−b) A2.

x + 0 = (a−1c) + (−b) A4.

0 + x = (a−1c) + (−b) A1.

x = (a−1c) + (−b) A3.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement. In an ordered field, if xz ≥ yz and z > 0 then x ≥ y.

True. Since z > 0 we have z 6= 0 so z−1 exists and z ≥ 0 implies z−1 ≥ 0. (If
not, z−1 < 0 so multiplying by z ≥ 0 gives 1 = zz−1 = (z−1)z ≤ 0z−1 = 0 contrary
to 1 > 0.) Hence the inequality is preserved upon multiplying by z−1. It gives
(xz)z−1 ≥ (yz)z−1 which implies x = 1x = x1 = x(zz−1) = (xz)z−1 ≥ (yz)z−1 =
y(zz−1) = y1 = 1y = y.

(b) Statement. Let {xn} be a convergent sequence such that every xn is irrational. Then
the limit lim

n→∞
xn is irrational.

False. Let xn =

√
2

n
. Then xn is irrational as it is the product of rational 1

n and

irrational
√

2, but xn → 0 as n→∞, where the limit, 0, is rational.
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(c) Statement. Let f and g be two real valued functions defined for all reals such that
sup
R

f = sup
R

g = 1. Then sup
R

(f + g) = 2.

False. Let f(x) =

{
sinx, if x ≥ 0;

0, if x < 0.
and g(x) =

{
0, if x ≥ 0;

sinx, if x < 0.
. Then f(R) =

g(R) = [−1, 1] so sup
R

f = sup
R

g = 1. But (f + g)(x) = sinx so (f + g)(R) = [−1, 1]

and sup
R

(f + g) = 1 6= 2.

4. Recall that the rational numbers are defined to be the set of equivalence classes Q = S/ ∼
where S =

{a
b

: a, b ∈ Z, b 6= 0
}

is the set of symbols (pairs of integers) and the symbols are

equivalent if they represent the same fraction
a

b
∼ c

d
iff ad = bc. We denote the equivalence

class, the “fraction,”
[a
b

]
to distinguish it from a symbol from S. Given fractions x, y ∈ Q,

how should addition x + y and multiplication be xy defined to make Q a field? You don’t
need to check that these are well defined nor that the axioms of a field are satisfied. Suppose

we wish to define the function f : Q→ Q by f
([a

b

])
=

[
a2

a2 + b2

]
.

Is f well defined? Why or why not? State the Completeness Axiom for an ordered field F .
Do the rational numbers Q satisfy the Completeness Axiom? Why or why not?

Addition and multiplication are defined for arbitrary
[a
b

]
,
[ c
d

]
∈ Q by

[a
b

]
+
[ c
d

]
=

[
ad + bc

bd

]
,

[a
b

] [ c
d

]
=
[ac
bd

]
.

One then checks this addition and multiplication are well defined and with these, Q satisfies
the field axioms.

To show that f is well defined we need to show that if
a

b
∼ c

d
then f

([a
b

])
= f

([ c
d

])
which is the same as

a2

a2 + b2
∼ c2

c2 + d2
. But

a

b
∼ c

d
holds if ad = bc. Now using this we see

that (c2 + d2)a2 = a2c2 + a2d2 = a2c2 + b2c2 = (a2 + b2)c2 which says
a2

a2 + b2
∼ c2

c2 + d2
.

The ordered field F satisfies the completeness axiom if every nonempty set of F which is
bounded above has a least upper bound in F .

The rationals are not complete. The set A = {x ∈ Q : x2 < 2} is bounded above, (say by
3 since if x > 3 then x2 > 9 > 2 so x /∈ A, hence members of A are at most 3). The least
upper bound would have to be

√
2, but

√
2 is not rational.

In fact we showed that if q > 0 is a rational upper bound for A so q2 > 2 then q̃ = 1/q+q/2
is rational, 0 < q̃ < q but (q̃)2 > 2 so q̃ is a strictly smaller upper bound for A. Similarly,
if r > 0 is rational such that r2 < 2 then r̃ = 4r/(2 + r2) is rational, (r̃)2 < 2 and r < r̃ so
that for any r ∈ A there is a strictly greater r̃ ∈ A. Thus the positive least upper bound
must be smaller that any rational such that q2 > 2 and larger than any rational such that
r2 < 2. Hence the least upper bound would satisfy x2 = 2, but there is no such rational. )
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5. Let {xn} be a real sequence and L a real number. Define: L = lim
n→∞

xn. Using just your

definition, determine whether the limit L = lim
n→∞

n2 + n

n2 − 7
exists and prove your answer.

The sequence is said to tend to a limit, L = lim
n→∞

xn, if for every ε > 0 there is an N ∈ R

such that
|xn − L| < ε whenever n > N .

We claim 1 = lim
n→∞

n2 + n

n2 − 7
. To prove it, choose ε > 0. Let N =

16

ε
+ 4. For any n ∈ N

such that n > N we have n > 4 so n2 − 7 > 0, 7n > 7 and 1
2n

2 > 7. Thus

|xn − L| =
∣∣∣∣n2 + n

n2 − 7
− 1

∣∣∣∣ =

∣∣∣∣n2 + n

n2 − 7
− n2 − 7

n2 − 7

∣∣∣∣ =

∣∣∣∣ n + 7

n2 − 7

∣∣∣∣ =
n + 7

n2 − 7

≤ n + 7n

n2 − 1
2n

2
=

8n
1
2n

2
=

16

n
<

16

N
=

16
16
ε + 4

=
16ε

16 + 4ε
<

16ε

16
= ε.
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