Math 3160 § 1. Final Exam Name: Practice Problems
Treibergs April 11, 2015

Half of the final will be comprehensive. The other half will focus on material since
the last midterm exam. These practice problems cover this last third of the course.

1. Let C be any closed contour, described in the positive sense in the z plane, and write

53+ 2s
o= [ G
Show that g(z) = 6miz when z is inside C' and g(z) = 0 if z is outside.

See text problem 170[4]. In case z is outside C, then because the function

s34+ 2s

"=

is analytic on and inside C, by the Cauchy-Goursat theorem we have

g(z) = / h(s)ds = 0.
c
If z is inside C then we may apply the extended Cauchy Integral Formula, namely

2!97(2)_27!/ (k(s)dé‘:k”(z)
C

2mi  2mi 5—2)3

where
k(s) = s> + 2s.

Thus we find
g(z) = mik" (z) = mi(62).

2. Show for any real constant a,

/ e®°% cos(asin ) df = .
0

See text problem 171[7]. Let C be the unit circle |z| = 1 with center zg = 0 and positive ori-
entation. We first observe from the Cauchy Integral Formula applied to the entire function
e%* that at zo = 0,

eaZ
/ dz = 2mi e®®° = 2.
c <

Rewriting the integral in terms of z = e = cos@ +isin for —w <0 <,
™ e cos 0+1iasin 6 ) T
27t = / — % dh =i / e®°% (cos(asin @) + i sin(asin 6)) db.

et

—T —T

The imaginary part of this equation is
™ ™
2 = / e cos(asin ) df = 2 / €89 cos(a sin ) db.
- 0

We have used the fact that the function h(f) = e2<°3? cos(a sin #) is even because it satisfies
h(0) = h(—0) so that areas under the integral to the left and right of zero are equal.



3. Suppose that f(z) is entire and that

lim @

z—00 2

=0.

prove that f is constant.

We follow the proof of Liouville’s theorem. Let zy € C be any point and let Cr be the
circle |z — zg| = R. Since f is entire, the radius R may be as large as you please. Then by
Cauchy’s Inequality, the derivative

M
(o) < ¢
where Mp is the maximum value of | f(z)] for z € Cg. Because Cg is a closed and bounded
set and |f(z)| is continuous on C, there is a point ((R) € Cr such that |((R)| = Mg. By
the triangle inequality,

R+ |20 = |20 = C(R)[ + [20] = [(C(R) = 20) + 20]
= [C(R)|
> |I¢(R) = 20| = |20l | > [C(R) = 20| = |20] = R — |20

so that |((R)| — oo as R — oo. It follows that

Mp _ [fCR)| _ 'f(C(R))‘. SR ‘f(C(R))"R+ [z
R R ¢(R) R | ¢(R) R

[/ (z0) < 0-1=0

as R — oo because, by assumption,

f(C(R))

RS ((R) =0

Since zg was arbitrary, f/ =0 on C so f is constant.

4. Suppose f and g are continuous on a closed region in the plane bounded by the simple closed
contour C' and are both analytic inside C. Suppose that f = g on C. Show that f = g on
the whole region.

The function h(z) = f(z) — g(z) continuous in the region and analytic inside. By the
maximum modulus principle,

1)1 < max|h(z)|

which is zero because h(z) = 0 on C. Therefore f(z) — g(z) = h(z) = 0 for all z inside C.

5. Find the mazimum of |e* | on the unit disk.
By the maximum modulus principle, the maximum occurs on the boundary. Letting z = e’
run through all boundary points as —7 < 8 < 7w we have

— |6COS 2041 sin 20| _ ecos 260

e’ = e
which is maximum when cos20 =1 at § = 0 and 6 = +7. Thus

| <e

with equality at z = £1.



6. Let zg be a zero of the polynomial of degree n > 1,
P(2) =ag+ a1z + agz® + -+ ap2", (an #0).
Show that there is a polynomial Q(z) of degree n — 1 such that
P(2) = (z = 20)Q(2)-

See the text problem 178[8]. Note that for any zo,

k—1
Kb = (= 20) (T T 20T ) = (2 - 20) Z P
§=0

Thus because the constant terms cancel, switching the order of summation,

P(z) = P(20) = ) _axz —Zakzo
p

= Z(Lk (Zk —Zg)

k=1

3

3

I
M:

k: 1-
k(z — 20) E 2 h=1=d

k=1
n k—1
(2 — 29) ZZakz] k=1=j
k=175=0
n—1
= (2 —2) Z apze | 2
=0 \k=j+1
= (2 — 20)Q(»)

1

where Q(z) is of degree n — 1 since its 2"~ ! coefficient is a,, # 0. If 2¢ is a zero, then

P(zp) = 0 and the result follows.

7. Show that if b > 0 then
7= / e~ cos 2bx dr = ge*b2.
0

See the text problem 159[4]. The improper integral is computed from the limit
R 2
lim e ¥ cos2bz d.

R—o0 J

The idea is to find a complex function and contour

—R+ib R+ib




where the desired integral appears as the real or imaginary part of

= /C £(2) dz.

The contour and function that works is the rectangle C' whose sides are segments from R
to R+ bi to —R + bi to —R and back to R, and f(z) = exp(—2?).

Along the bottom, z =t where ¢ runs from —R to R

R
7t2
Il = / e dt.
R

. o —¢2
L= lim 11:/ e " dt

R—o0

The limit of integral as R — oo is

—00

This is done using a trick you saw in advanced calculus. The integral over the plane is
computed using polar coordinates.

L? = </ e~ da:) (/ eV’ dy)
= // e_(‘"”2+y2)da:dy
R2
27 ] 2
:/ / e " pdpdd
o Jo

:27r/ e*pgpdp
0

The integral along the top z(t) = ib — t where ¢ runs from —R to R. Then z(t)? =
—b% — 2ibt + t* so that

R R R
I3 = —/ B / et (cos2bt 4 isin 2bt) dt = —2¢b / e cos 2bt dt
R —R 0

since the real part is the integral of an even function and the imaginary part is the integral
of an odd function. Thus the limit is a multiple of the desired integral

lim I3 = —2¢°7.

R—o0

Along the right side of C, z(t) = R + ti where 0 < ¢ < b so that
b 2 . 2
I, = / e T TREA G gy,
0
which is bounded by
’ R2_2Rti+t? R? ’ 2
|12|§/ ‘6_ —2htet z‘ dt =e” / et dt.
0 0

which tends to zero as R — oo. Similarly, along the left side, z(t) = —R — ti where
—b <t <0 so that

0
2 42
14 — / e—R +2Rti+t idt.
—b



which is bounded by

b 0
2 2  p2 2
|I4|:/ ‘e*R FRREA 1 gt < e R / el dt.
0

—b

which tends to zero as R — oco. Finally, by the Cauchy-Goursat Theorem,
C
Taking the limit of theis equation as R — oo yields

0=v7+0-2""T+0

so that
VT2
~—e

2

T =
as desired.

. Determine whether the sequence converges and if so, prove it using the definition of the
convergence.
. n?’+in—3
lim ————
n—o0o (n—|—z)2

The convergence is implied by the existence of complex limit

. 224iz-3 . 22+iz-3 1+ i—3% 14040
L=lim “——— = lim —————— = lim Zz = —
2500 (2 41)2 z—00 22 + 24z — 1 z—>ool—|—f—zi2 1+0-0

The proof is almost the same as in the complex limit. If L € C, we say that 2z, — L as
n — oo if for every € > 0 there is an ng € N such that

|z, — L| < € whenever n > ng.

8
Choose € > 0. Let ng € N be an integer so large that ng > — + 2. Then if n € N such that
€

n > ng we have n > 2 so by the triangle inequalities,

| | n?+in—3 n?+in—3— (n?+2ni — 1) | —in — 2]

zZ. _ = | = =

" (n +1)? (n+1)? In + |2
|n| + 2 n+2 n+n 2n 8 8 8

|In| — ‘1|’2 (n—=127~"(n—-%)% n%/4 n ng 8¢

€.

. Find the Taylor series with center zy = 3i and determine the radius of convergence for the

function
2z

1@ =77

The partial fractions decomposition is

2z 1 1

1z) = (z+4)(z—4) B z+4+zf4'

Use the geometric sum

oo . 1
kzzow Tl-w



10.

which converges exactly when |w| < 1. Centering the fractions on (z — 3i) we obtain

e : :
z) = —
A43i+(2—3i) 4-3i—(z—30)
1 1
_ 4+3i 4-3i
_1+z—3z 230
4+3Z 4—3i
(z—Si)k_ 1 i(z—Si)k
4+3 v 4+ 31 4—3ik20 4 -3
oo k+1 k+1
5) () )e-wr
=— + - (z — 3i)
k_0<(4+3z 1-3i
-3 z— 31
The series converge if 4 3 <la d‘ 3 < 1 which both say |z — 3i| < 5. Thus the

radius of convergence is at least five. The function f(z) blows up at z = +4 which are a
distance 5 from zy = 37, so that the radius of convergence is at most five, so R = 5.

Let C be the unit circle |z| = 1 with positive orientation. Find

/ dz
C er —1 '
We may use the Residue Theorem. Alternately, we observe that f(z) = 1/(e* —1) is singular
at z = 0. We use the fact that
2m / 1z

is the coefficient of the 1/z term for the Laurent series of f, provided that f is analytic in
some annulus R; < |z| < Ry containing C, such that Ry < 1 < Ry. But e =1 if and only
if z = 2min for some n € Z. Hence f(z) is analytic in the annulus 0 < |z| < 27 containing
C. Tt remains to find the Laurent coefficient.

f(2) ! ! !
Z = = = .
e =1 (I+z+3224+3284-) -1 z(l4+324+322+-)

Doing long division

1 ! + ! +-
— -z 4 —22
2 12

1 1,
1+§z+6z + - 140-2+0-22+4---

1 1,
14+ -2+ 2"+

2 6
Loy
1—1222+--

0+--



11.

we find

1 1 1
—~(1=-Z= 2 =2 24—
f(2) Z( 52t 3%+ ) + =z +

d
/ : - = 2miby = 2mi.
C eZ J—

Find the Maclaurin Series up to the z* term for

thus b; = 1. It follows that

f(z) = Log(1 +sin(2))

We know that 1
— =1l-wHw—wPruwt—w®- .
1+ w

which converges for |w| < 1. By integrating in paths from 0 to ¢ in the unit disk |z] < 1,
we find
¢ dw 22 23

4
z
Log(1 = T L,y
og(1+¢) Ak T
which converges for |(] < 1. We shall substitute
53 45 57
C=sinz ===+ 90 " 50a0
which converges for all z € C. We compute up to the 26 power
2 _ _i3+i_ ’
6 120
3
9 z 1 1 6
=222 4 (2 — + =
z z 6+< 120+62) +
_Z2_i4+E+
B 3 45
3 5 4 6
I SR D (S
C‘( 6 120 )( 3 a5t >
=23 - f—i—l 2% +02° :z3—1z5—|—026
3 6 2
3 1
4:<z—6+-~-)-(z3—2z5—|—0z6 )
o P
2 6



Substituting the values we find

2 3 4 5 6
Log(l+Q)=C- S+ 5 -5 -5

3 25 6 L/, 2zt 226 175 154
- _Z 42 — _Z _Z 427 Z i 029 ...
(z 6+120+02 ) 2( 3+45+ )+3<z 2,z+z
1 2 1 1
4(24 §z6+ >+5(z5+026 ) 6(26 )+

4 n 525 26 n
2 6 6 120 45

12. Let C be the positively oriented circle |z| = 2. Calculate the integral using residues.

52 —4
/ b AR
o 2(z2-3)
The function has singularities at z = 0 and z = 3, of which only z = 0 is inside C. Thus,
the integral is given by the Residue Theorem

I:/ 527_4dz:2m' RQSL_LL
o 2(z2—3) 2=0 z(z —3)

We expand the second factor to find

5z —4 4 3
== - —_(Z_5]).
z(z —3) z -3

1
4 1 z 22
Y S I T R H
(z 5) 3(+3+9+ )
A (45 (45,
3z 9 27 9
so that 5 A A 3
z— i
R == d = —
z:egz(zf?)) 3 o 3

13. Let the degree of the polynomials
P(z)=ap+ a1z +a2® +---+apz",  (an #0).
and
Q(2) =bo + b1z +boz® + -+ bp2™, (b #0).

be such that m > n + 2. By computing the residue at infinity, show that if all the zeros of
Q(z) are interior to a simple closed contour C, then

J.

z

P
Q

;dz().



14.

15.

See text problem 238][7]. Since C is outside all the zeros, then for R large enough, P(z)/Q(z)
is analytic in R < |z| < 0o so oo is an isolated singularity. Let Cy be a negatively oriented
circle Cy (about 0) given by |z| = R. By the Residue Theorem at infinity

= b(z) z = — Pz) z = —2mi Res P(Z):— T
1= [ g o Q) T T AR gy T

Now, by the change of variables ( = 1/z we get the formula

Multiplying top and bottom by (™ we find

1 ay a
1 p<,) 1 a+ — -+ + =

l o) _ 2 ¢ ¢
2 2
¢ Q(%) ¢ bo+%+~~+2—’fn

— Cm7n72 . an + an_1C + 4 aOCn
bm + bm,1C + -4 b0<7n
=" (0).

Since a,, # 0 and b, # 0 the rational function ¢(¢) is analytic at ¢ = 0 such that ¢,,—p—2 =
g(0) = ay /by # 0. Since m —n — 2 > 0, the function

<m7n72g(€-) - Cm—n—ZCmin72 + Cm—n—lcminil + e
has no negative powers, thus the residue B = 0.

Suppose that the function f(z) is analytic throughout the entire plane except for a finite
number of singular points z1, zo,. .. ,zn. Show that

Res f(2) + Res f(z)+-~-+211%s f(z)—i—zfi%i f(z)=0.

72=171 Z=172

See text problem 238[6]. Let C' be a positively oriented (about 0) simple closed contour
that encloses all of the singular points. Let Cy be a circle |z| = R, where R is large enough
to enclose C' and the singular points, which is oriented negatively with respect to the origin.
Then from the Residue Theorem for points inside,

1
211

/ f(z)dz = Res f(z) + Res f(2) +---+ Res f(z) (1)
c Z=71 Z=179 Z=%7n
On the other hand, since f is analytic on C and Cjy and the annular region between, and
by the Residue Theorem at infinity since f(z) is analytic on |z| > R,

1 1

aei V=5 [ Sz =~ Res 1) (2)

Equating formulas (1) and (2) give the desired result.

Show that the the point z = mi is a pole. Determine the order of the pole m, and the

corresponding residue B.
£(2) 1+ coshz
Z2)= ———=
(2% + 72)3



The denominator may be factored as
(22 + 7122 = (2 — mi)3 (2 + mi)?

Using the fact that cosh(mi) = cos(m) = —1 and sinh(7i) = isinm = 0, the numerator may
be expressed as a power series by using the trigonometric identitiy

14 cosh z = 1 + cosh(mi + (z — i)
= 1+ cosh(mi) cosh(z — mi) + sinh(7é) sinh(z — 7)

=1 — cosh(z — 7)

_ 1 he L 4 1 6
= 2(2 1) 51 (z —mi) 20 (z —mi)
so that we may rewrite
_ 1 1 _ 9(2)
1) = (z —mi)3 (2 +mi)3 (1+coshz) = z— i
where . . . )
= ——— —_ E— —_ ) 2 —_— —_ ) 4 ...
o) =~ (2 FogF ) e i) )

is analytic and non-vanishing at z = wi. Thus z = 7 is a pole of order m = 1 and the the
residue is the lowest coefficient, namely

1 . 1+4coshz

B = ¢(mi) = (mi+ )3 o ih (z —mi)?

Using 'Hospital’s Rule twice on these “%” forms one gets

B ) . sinh z ) . cosh z 7
=—-lim — = — " lim = ——.
87‘(‘3 Z—T1 2(2; — 7T’L) 87‘(3 zZ—>T1 2 167’(’3

Equivalently, we could have expanded the first factor to find

1 < P > < 1L o, >3 N B
- — po— — _—— PN = — — ——(z2 —m e
(z+ mi)3 1422 2mi (2mi)? 83 1674
so that

00 = (g ~ o=+ )+ (5 gy~ mi + mggle =t )

873 1674

S + i(z — i) +
T 16m%  32mt T
Thus confirming that _
i

. Find the residue for each single valued branch at the singular point.

flz) =

z—1

The square root function has two branches at z = 1 given in 7 > 0 and —7 < 6 < 7 for
n=20,1 by
p(z) = z% _ \/;e(eﬁm‘n)/z _ i\/;eie/z

10



Near z = 1 both branches are analytic and p(1) = +1 # 0. On the other hand, the
denominator

q(z) =z -1
has a simple zero at zp = 1. Thus the residue is given by

Res 1) = B = 2

+1.

17. Let C'y be the positively oriented boundary of a square whose edges lie along the lines

1 1
x::I:<N+2> and y:j:(N+2>

where N is a positive integer. Show

N
1 ("
—+2 — .
6 + nz::l n2m2 1

Then, show that this integral tends to zero as N — oo and conclude

11 1 (=1 g2
1l -4+ - — 1. = ANt A
VIR T ; 52 12

See the text problem 254[6]. Observe that zero is a pole of order m = 3 for the function

) = e = !

22sinz 23 (1— 3224 52t =)

Dividing, we find

1 7
14 2224 44 ...
+6,z +3602+

1 1
1—z2—|—z4—---> 1402240244

6 120
1 1
1-— = 2 I S
¢~ " 10°
Lo 1 4
6~ “120° T
L, 14
6" 36" "
7T 4
360°
7T 4
360"
0+
so that the second coefficient of ¢(z) gives the
1
Res f(2) = &
The other poles in the square are at z = +nw wheren = 1,..., N. At zyp = £nm, the function
f(z) has a simple pole. Writing f(z) = p(z)/q(z) where p(z) = 1 and ¢(z) = 2%sin 2, the
residue
+ 1 1 -1
Res f(z):p( nm) _ . 5 = _
z=+nn ¢'(£nm)  2zpsinzo +zjcoszg 0+ (Enm)2cos(nm)  n2w?

11



Hence, the Residue Theorem tells us the desired value of the integral

(

~1)
n? m2

n

1
211 Cn

N 1 N
f(z)dz= Z Zfitrejr flz)= 6 + 22
n=—N n=1

In my “Practice Problems for the Second Midterm,” problem 17, I show that the integral
tends to zero as N — oo. Thus, taking N — oo, we find

n

-~ (1)
0= +22:7127r2
n=1

| =

Solving we find the desired sum
(_1)n+1 2

> e
P e vl

You may have seen another derivation of this awesome formula using Fourier Series.

oo 2
/ S SN ¥
o Tr+z2+1
[From Kenneth S. Miller, Introduction to Advanced Complex Calculus, Dover, New York,

1970, p. 135; republication of Harper & Brothers, 1960.] The integral is obtained as the
limit

. Fvaluate the improper integral.

R 72
I = lim 5 5 dr
R—oo Jy x4+ a22+1
Because the integrand is bounded for = # 0 by an integrable function

x? x? 1

< =
zr+ 2 +1 7 2222 +1)  22+1

which holds also for x = 0, the improper integral exists. Since the function
2

is even, real on the real axis and the poles miss the real axis

1 . 22
I =—- lim ——dz
2 R—oo Jg, 24+ 224+ 1

Where Sg is the line segment from —R to R. Let Cr denote the semicircle |z|] = R with
positive orientation in the upper half plane. Solving for the zeros of the denominator, 22
satisfies a quadratic equation whose zeros are

2 _ —1+V3i __+2mi/3
z =—3 =e

Thus the roots are z = +e™/3 or

_1+V3i
===,

—1+V3i

p 2

a,a@, 8,8 where «

12



19.

The simple closed contour Si + Cr encloses two roots o and § if R > 1. By the Residue
Theorem

/ f(z)dz = 2mi (Res f(2) + Res f(z))
Sr+Cr e #=h

Let us estimate the integral over Cr. If R > 1 then the length of Cg is Lr = wR. The
function is bounded for any z € Cr (for R > 2) by

Mg

S I N E
A+ 2241 |24+ 2241 = [|24 = |22+ 1] T |z* =2 -1 R*-R2-1
Thus the integral is bounded by

TR3
Rf—R2-1

2
z
—————dz| < LrMpr =
/CRZ4—|—22+1 # = HRAR

which tends to zero as R — oco. Computing the residues, using I’Hospital’s Theorem,

Res f(z) = i (2 —a)z? . 322 —2az  3a? — 202 «@ e
z) = lim = lim = = =
=a zoazt 42241 z2oa 423422 a(da?+2) 4a2+2 23
(=P | 3298 329 p 8

R =1 = _ = — -
par] 1) BB AL 2241 ahh 423 + 22 B4p2+2) 4B2+2 234
where we have used 202 = —1 + /3¢ and 262 = —-1— V3. Adding we find

274 us
flz)dz+ f2)dz=—F——(a—p) = —
Sk (=) Cr =) 2\/32( ) V3
because a — = 1. Letting R — oo yields
T

1 oo
Izg/_oof(z)dz:r\/g.

Use residues to evaluate the integral.
I /°° 23 sinz dx
o (@2 +1)(a? +4)

23 23

) = D+ ) " oG+ G20 +2)

Note that the function

decays like 1/|z| and is not integrable by itself and needs the sin z factor to make it integrable.
This integral may be integrated using Jordan’s Lemma, because f(z) is a rational function
without poles on the real axis, analytic outside |z| > 2 and for any |z| = R,

R3

16) < =T

:MR

which tends to zero as R — co. As usual, it is far easier to remember the trick in Jordan’s
Lemma that makes the estimates work, rather than the Lemma itself.

First of all, for z real, f(z)sinz = Sm(f(z)e?*) is an even function so that the improper
integral exists if the limit exists,

R
, 1 A
I=Sm ( lim / f(z)e*® dz) = %m( lim — (z)e® dz> ,
R—o0 /g R—co 2 Sk

13



where Sg is the line segment from —R to R. Let Cg be the semicircle |z| = R in the upper
halfplane in the counterclockwise direction. Estimating the integral,

f(2)e*dz| =
Cr

/w f(Reie)ei(R cos 0+iR sin 6) Rei9 da‘
0

" 0
SAUWBN

< / MR e—Rsine RdO
0

R4 T Reind
— — sSin de
(mfmmeAe

_ 2R4 /7‘—/2 —Rsin6 dao
TR-N® -4 )

ei(R cos 0+iR sin 0) ‘ Rd6

where we use the fact that sin 0 is symmetric to the left and right of § = w/2. Now Jordan’s
trick is the inequality for 0 < 0 < /2

2
sinf > —9
T

which just says that the straight line from the origin to (7/2, 1) lies under the curve y = sin 6.
Using it in the integral

f(2)e¥ dz

4 /2
< 2R / e 20/ dg
Cr B ) Jo

(R2—-1)(R* -4
TR3
CENZEL

1-— e_R)

which tends to zero as R — oo. The function f(z)e* has simple poles inside the contour
at ¢ and 2¢. Thus the Residue Theorem tells us that

/ f(2)e* dz = 2mi (Re_s f(2)e"* 4+ Res f(z)eiz)
Sr+CRr =1

z=2i

The residues may be evaluated as ¢(zp) which is

e N Zdezl B e 1
Res f(z)e™ = ¢(i) = (i+i)(i—20)(i+2i) 6

. N (2i)36i~2i B 2672
Reg JR)e™ =000 = @iz o@is )~ 3

Letting R — oo, we see that the integral

—1 -2
I =S8m {m‘ (—66 + 263 )] = é(él— e).

20. Derive the integration formula

o
I‘A RIS RV

See the text problem 283[4]. Using the branch r > 0 and 0 < § < 27 so that

S1/3

o
IO = ey - GG D

1/3) log z

14



f(#) is not analytic at zero and there are two branches on the positive real axis for § = 0
and 6 = 2w. We shall take the contour that consists of L; from r to R where 0 < r < R
and 0 = 0, C® which is the circle |z| = R from 6 = 0 to § = 2, Ly line segment from R to
r at = 2, and C, which is the circle |z| = r from 6 = 27 to § = 0. The two segments L
and Lo overlap but correspond to different branches of the cube root.

' |

.

The improper integral

R 3 (1/3) log z
I=tim [ VT g lim/ B P
520 e (e +8)(z+1) 520 Jr, (2+8)(z2+1)

since 8 =0 on Ly. On Ly, 8 = 27 so that

6(1/3) logz _ 6(1/3)(1nz+27ri) — e271'1'/36(1/3) Inz

so that, taking the revered direction into account,

1/3)log z 1/3)log z
/ s i / _eolss
L, (z4+8)(z+1) L, (z+8)(z+1)
Finally we check that the other integrals vanish. Indeed for |z| = R > 8, because |z + 1| >
|z = ||| > |s|] ~1=R—1and |z +8| > R -8,
(1/3)(In R+61)

(z+8)(z+1)

R1/3
SE-S)ER-1)

:MR

Since Cr has length Lr = 2nR we get the estimate

e(l/3)(lnR+9i) 27T'R4/3
— dz| < MpLp = ——mF———
/CR (z+8)(z+1) Z‘— RER = R (R 1)

which tends to zero as R — oo. For 0 < |z| =7 < 1, because |z+1] > [1—|z|| > 1—|z| = 1—r
and |z + 8| > 8 —r,

e(l/S)(lnr+0i) Rl/S
< = Mg
(z+8)(z—|—1)‘ 8—-r)(1-r)
Since C; has length L, = 27r we get the estimate
(1/3)(In R+64) 4/3
/ < 4 <M,L, = _
c, (z+8)(z+1) 8-—r)(1-r7)

which tends to zero as r — 0.
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Now the contour Ly + Cg + Lo + C). encloses the poles z = —1 and z = —8. By the Residue
Theorem,

S1/3

/L1+CR+L2+CT (z+8)(z+1)
Computing, we find

dz = 2mi (fﬁ J(2) + Res f(z)) (3)

R ) 6(1/3)(111 1+47i) e‘n’i/3

R . e(1/3)(In 8+mi) 2e™4/3
z:e—g f(Z) - (rb(* ) - (—8 I 1) - 7

Taking the limit as » — 0 and R — oo in (3),

) /3 ) Ti/3
(1—627”/3)1227ri<€ e )

7 7

It follows that

\/g T e—7ri/3 _ eTr'i/3 T
—fI:—sin(—)I: = __
2 3 21 7
SO
_ 2T
= 77\/5
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