
Math 3160 § 1.
Treibergs

Final Exam Name: Practice Problems
April 11, 2015

Half of the final will be comprehensive. The other half will focus on material since
the last midterm exam. These practice problems cover this last third of the course.

1. Let C be any closed contour, described in the positive sense in the z plane, and write

g(z) =

∫
C

s3 + 2s

(s− z)3
ds.

Show that g(z) = 6πiz when z is inside C and g(z) = 0 if z is outside.

See text problem 170[4]. In case z is outside C, then because the function

h(s) =
s3 + 2s

(s− z)3

is analytic on and inside C, by the Cauchy-Goursat theorem we have

g(z) =

∫
C

h(s) ds = 0.

If z is inside C then we may apply the extended Cauchy Integral Formula, namely

2! g(z)

2πi
=

2!

2πi

∫
C

k(s)

(s− z)3
ds = k′′(z)

where
k(s) = s3 + 2s.

Thus we find
g(z) = πik′′(z) = πi(6z).

2. Show for any real constant a, ∫ π

0

ea cos θ cos(a sin θ) dθ = π.

See text problem 171[7]. Let C be the unit circle |z| = 1 with center z0 = 0 and positive ori-
entation. We first observe from the Cauchy Integral Formula applied to the entire function
eaz that at z0 = 0, ∫

C

eaz

z
dz = 2πi eaz0 = 2πi.

Rewriting the integral in terms of z = eiθ = cos θ + i sin θ for −π ≤ θ ≤ π,

2πi =

∫ π

−π

ea cos θ+ia sin θ

eiθ
i eiθ dθ = i

∫ π

−π
ea cos θ (cos(a sin θ) + i sin(a sin θ)) dθ.

The imaginary part of this equation is

2π =

∫ π

−π
ea cos θ cos(a sin θ) dθ = 2

∫ π

0

ea cos θ cos(a sin θ) dθ.

We have used the fact that the function h(θ) = ea cos θ cos(a sin θ) is even because it satisfies
h(θ) = h(−θ) so that areas under the integral to the left and right of zero are equal.

1



3. Suppose that f(z) is entire and that

lim
z→∞

f(z)

z
= 0.

prove that f is constant.

We follow the proof of Liouville’s theorem. Let z0 ∈ C be any point and let CR be the
circle |z − z0| = R. Since f is entire, the radius R may be as large as you please. Then by
Cauchy’s Inequality, the derivative

|f ′(z0)| ≤ MR

R

where MR is the maximum value of |f(z)| for z ∈ CR. Because CR is a closed and bounded
set and |f(z)| is continuous on C, there is a point ζ(R) ∈ CR such that |ζ(R)| = MR. By
the triangle inequality,

R+ |z0| = |z0 − ζ(R)|+ |z0| ≥ |(ζ(R)− z0) + z0|
= |ζ(R)|
≥
∣∣|ζ(R)− z0| − |z0|

∣∣ ≥ |ζ(R)− z0| − |z0| = R− |z0|

so that |ζ(R)| → ∞ as R→∞. It follows that

|f ′(z0)| ≤ MR

R
=
|f(ζ(R))|

R
=

∣∣∣∣f(ζ(R))

ζ(R)

∣∣∣∣ · |ζ(R)|
R

≤
∣∣∣∣f(ζ(R))

ζ(R)

∣∣∣∣ · R+ |z0|
R

→ 0 · 1 = 0

as R→∞ because, by assumption,

lim
R→∞

f(ζ(R))

ζ(R)
= 0.

Since z0 was arbitrary, f ′ = 0 on C so f is constant.

4. Suppose f and g are continuous on a closed region in the plane bounded by the simple closed
contour C and are both analytic inside C. Suppose that f = g on C. Show that f = g on
the whole region.

The function h(z) = f(z) − g(z) continuous in the region and analytic inside. By the
maximum modulus principle,

|h(z)| ≤ max
z∈C
|h(z)|

which is zero because h(z) = 0 on C. Therefore f(z)− g(z) = h(z) = 0 for all z inside C.

5. Find the maximum of |ez2 | on the unit disk.

By the maximum modulus principle, the maximum occurs on the boundary. Letting z = eiθ

run through all boundary points as −π ≤ θ ≤ π we have

|ez
2

| = |ee
2iθ

| = |ecos 2θ+i sin 2θ| = ecos 2θ

which is maximum when cos 2θ = 1 at θ = 0 and θ = ±π. Thus

|ez
2

| ≤ e

with equality at z = ±1.
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6. Let z0 be a zero of the polynomial of degree n ≥ 1,

P (z) = a0 + a1z + a2z
2 + · · ·+ anz

n, (an 6= 0).

Show that there is a polynomial Q(z) of degree n− 1 such that

P (z) = (z − z0)Q(z).

See the text problem 178[8]. Note that for any z0,

zk − zk0 = (z − z0)(zk−10 + zk−20 z + · · ·+ z0z
k−2 + zk−1) = (z − z0)

k−1∑
j=0

zjzk−1−j0 .

Thus because the constant terms cancel, switching the order of summation,

P (z)− P (z0) =

n∑
k=1

akz
k −

n∑
k=1

akz
k
0

=

n∑
k=1

ak
(
zk − zk0

)
=

n∑
k=1

ak(z − z0)

k−1∑
j=0

zjzk−1−j0


= (z − z0)

n∑
k=1

k−1∑
j=0

ak z
jzk−1−j0

= (z − z0)

n−1∑
j=0

 n∑
k=j+1

akz
k−1−j
0

 zj

= (z − z0)Q(z)

where Q(z) is of degree n − 1 since its zn−1 coefficient is an 6= 0. If z0 is a zero, then
P (z0) = 0 and the result follows.

7. Show that if b > 0 then

I =

∫ ∞
0

e−x
2

cos 2bx dx =

√
π

2
e−b

2

.

See the text problem 159[4]. The improper integral is computed from the limit

lim
R→∞

∫ R

0

e−x
2

cos 2bx dx.

The idea is to find a complex function and contour
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where the desired integral appears as the real or imaginary part of

I =

∫
C

f(z) dz.

The contour and function that works is the rectangle C whose sides are segments from R
to R+ bi to −R+ bi to −R and back to R, and f(z) = exp(−z2).

Along the bottom, z = t where t runs from −R to R

I1 =

∫ R

R

e−t
2

dt.

The limit of integral as R→∞ is

L = lim
R→∞

I1 =

∫ ∞
−∞

e−t
2

dt

This is done using a trick you saw in advanced calculus. The integral over the plane is
computed using polar coordinates.

L2 =

(∫ ∞
−∞

e−x
2

dx

)(∫ ∞
−∞

e−y
2

dy

)
=

∫∫
R2

e−(x
2+y2) dx dy

=

∫ 2π

0

∫ ∞
0

e−ρ
2

ρ dρ dθ

= 2π

∫ ∞
0

e−ρ
2

ρ dρ

= π
[
−e−ρ

2
]∞
0

= π.

The integral along the top z(t) = ib − t where t runs from −R to R. Then z(t)2 =
−b2 − 2ibt+ t2 so that

I3 = −
∫ R

−R
eb

2+2ibt−t2 dt = −eb
2

∫ R

−R
e−t

2

(cos 2bt+ i sin 2bt) dt = −2eb
2

∫ R

0

e−t
2

cos 2bt dt

since the real part is the integral of an even function and the imaginary part is the integral
of an odd function. Thus the limit is a multiple of the desired integral

lim
R→∞

I3 = −2eb
2

I.

Along the right side of C, z(t) = R+ ti where 0 ≤ t ≤ b so that

I2 =

∫ b

0

e−R
2−2Rti+t2 i dt.

which is bounded by

|I2| ≤
∫ b

0

∣∣∣e−R2−2Rti+t2 i
∣∣∣ dt = e−R

2

∫ b

0

et
2

dt.

which tends to zero as R → ∞. Similarly, along the left side, z(t) = −R − ti where
−b ≤ t ≤ 0 so that

I4 =

∫ 0

−b
e−R

2+2Rti+t2 i dt.

4



which is bounded by

|I4| =
∫ b

0

∣∣∣e−R2+2Rti+t2 i
∣∣∣ dt ≤ e−R2

∫ 0

−b
et

2

dt.

which tends to zero as R→∞. Finally, by the Cauchy-Goursat Theorem,

0 =

∫
C

f(z) dz = I1 + I2 + I3 + I4.

Taking the limit of theis equation as R→∞ yields

0 =
√
π + 0− 2eb

2

I + 0

so that

I =

√
π

2
e−b

2

as desired.

8. Determine whether the sequence converges and if so, prove it using the definition of the
convergence.

lim
n→∞

n2 + in− 3

(n+ i)2

The convergence is implied by the existence of complex limit

L = lim
z→∞

z2 + iz − 3

(z + i)2
= lim
z→∞

z2 + iz − 3

z2 + 2iz − 1
= lim
z→∞

1 + i
z −

3
z2

1 + 2i
z −

1
z2

=
1 + 0 + 0

1 + 0− 0
= 1.

The proof is almost the same as in the complex limit. If L ∈ C, we say that zn → L as
n→∞ if for every ε > 0 there is an n0 ∈ N such that

|zn − L| < ε whenever n > n0.

Choose ε > 0. Let n0 ∈ N be an integer so large that n0 >
8

ε
+ 2. Then if n ∈ N such that

n > n0 we have n > 2 so by the triangle inequalities,

|zn − L| =
∣∣∣∣n2 + in− 3

(n+ i)2
− 1

∣∣∣∣ =

∣∣∣∣n2 + in− 3− (n2 + 2ni− 1)

(n+ i)2

∣∣∣∣ =
| − in− 2|
|n+ i|2

≤ |n|+ 2∣∣|n| − |1|∣∣2 =
n+ 2

(n− 1)2
≤ n+ n

(n− n
2 )2

=
2n

n2/4
=

8

n
<

8

n0
<

8

8/ε
= ε.

9. Find the Taylor series with center z0 = 3i and determine the radius of convergence for the
function

f(z) =
2z

z2 − 16
.

The partial fractions decomposition is

f(z) =
2z

(z + 4)(z − 4)
=

1

z + 4
+

1

z − 4
.

Use the geometric sum
∞∑
k=0

wk =
1

1− w
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which converges exactly when |w| < 1. Centering the fractions on (z − 3i) we obtain

f(z) =
1

4 + 3i+ (z − 3i)
− 1

4− 3i− (z − 3i)

=

1

4 + 3i

1 +
z − 3i

4 + 3i

−

1

4− 3i

1− z − 3i

4− 3i

=
1

4 + 3i

∞∑
k=0

(−1)k
(
z − 3i

4 + 3i

)k
− 1

4− 3i

∞∑
k=0

(
z − 3i

4− 3i

)k
= −

∞∑
k=0

((
−1

4 + 3i

)k+1

+

(
1

4− 3i

)k+1
)

(z − 3i)k

The series converge if

∣∣∣∣z − 3i

4 + 3i

∣∣∣∣ < 1 and

∣∣∣∣z − 3i

4− 3i

∣∣∣∣ < 1 which both say |z − 3i| < 5. Thus the

radius of convergence is at least five. The function f(z) blows up at z = ±4 which are a
distance 5 from z0 = 3i, so that the radius of convergence is at most five, so R = 5.

10. Let C be the unit circle |z| = 1 with positive orientation. Find∫
C

dz

ez − 1
.

We may use the Residue Theorem. Alternately, we observe that f(z) = 1/(ez−1) is singular
at z = 0. We use the fact that

b1 =
1

2πi

∫
C

f(z) dz

is the coefficient of the 1/z term for the Laurent series of f , provided that f is analytic in
some annulus R1 < |z| < R2 containing C, such that R1 < 1 < R2. But ez = 1 if and only
if z = 2πin for some n ∈ Z. Hence f(z) is analytic in the annulus 0 < |z| < 2π containing
C. It remains to find the Laurent coefficient.

f(z) =
1

ez − 1
=

1(
1 + z + 1

2z
2 + 1

6z
3 + · · ·

)
− 1

=
1

z
(
1 + 1

2z + 1
6z

2 + · · ·
) .

Doing long division

1− 1

2
z +

1

12
z2 + · · ·

1 +
1

2
z +

1

6
z2 + · · ·

)
1 + 0 · z + 0 · z2 + · · ·

1 +
1

2
z +

1

6
z2 + · · ·

− 1

2
z − 1

6
z2 + · · ·

−1

2
z − 1

4
z2 + · · ·

1

12
z2 + · · ·

1

12
z2 + · · ·

0 + · · ·
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we find

f(z) =
1

z

(
1− 1

2
z +

1

12
z2 + · · ·

)
=

1

z
− 1

2
+

1

12
z + · · ·

thus b1 = 1. It follows that ∫
C

dz

ez − 1
= 2πib1 = 2πi.

11. Find the Maclaurin Series up to the z4 term for

f(z) = Log(1 + sin(z))

We know that
1

1 + w
= 1− w + w2 − w3 + w4 − w5 · · ·

which converges for |w| < 1. By integrating in paths from 0 to ζ in the unit disk |z| < 1,
we find

Log(1 + ζ) =

∫ ζ

0

dw

w + 1
= z − z2

2
+
z3

3
− z4

4
+ · · ·

which converges for |ζ| < 1. We shall substitute

ζ = sin z = z − z3

6
+

z5

120
− z7

5040
· · ·

which converges for all z ∈ C. We compute up to the z6 power

ζ2 =

(
z − z3

6
+

z5

120
− · · ·

)2

= z2 − 2z · z
3

6
+

(
2 · 1

120
+

1

62

)
z6 + · · ·

= z2 − z4

3
+

2 z6

45
+ · · ·

ζ3 =

(
z − z3

6
+

z5

120
− · · ·

)
·
(
z2 − z4

3
+

2 z6

45
+ · · ·

)
= z3 −

(
1

3
+

1

6

)
z5 + 0z6 · · · = z3 − 1

2
z5 + 0z6 · · ·

ζ4 =

(
z − z3

6
+ · · ·

)
·
(
z3 − 1

2
z5 + 0z6 · · ·

)
= z4 −

(
1

2
+

1

6

)
z6 + · · · = z4 − 2

3
z6 + · · ·

ζ5 =

(
z − z3

6
+ · · ·

)
·
(
z4 − 2

3
z6 + · · ·

)
= z5 + 0z6 · · ·

ζ6 =

(
z − z3

6
+ · · ·

)
·
(
z5 + · · ·

)
= z6 + · · ·
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Substituting the values we find

Log(1 + ζ) = ζ − ζ2

2
+
ζ3

3
− ζ4

4
+
ζ5

5
− ζ6

6
· · ·

=

(
z − z3

6
+

z5

120
+ 0z6 − · · ·

)
− 1

2

(
z2 − z4

3
+

2 z6

45
+ · · ·

)
+

1

3

(
z3 − 1

2
z5 + 0z6 · · ·

)
− 1

4

(
z4 − 2

3
z6 + · · ·

)
+

1

5

(
z5 + 0z6 · · ·

)
− 1

6

(
z6 · · ·

)
+ · · ·

= z − z2

2
+

(
−1

6
+

1

3

)
z3 +

(
1

2
· 1

6
− 1

4

)
z4 +

(
1

120
− 1

3
· 1

2
+

1

5

)
z5

+

(
−1

2
· 2

45
+

1

4
· 2

3
− 1

6

)
z6 + · · ·

= z − z2

2
+
z3

6
− z4

6
+

5 z5

120
− z6

45
+ · · ·

12. Let C be the positively oriented circle |z| = 2. Calculate the integral using residues.∫
C

5z − 4

z(z − 3)
dz

The function has singularities at z = 0 and z = 3, of which only z = 0 is inside C. Thus,
the integral is given by the Residue Theorem

I =

∫
C

5z − 4

z(z − 3)
dz = 2πi Res

z=0

5z − 4

z(z − 3)

We expand the second factor to find

5z − 4

z(z − 3)
=

(
4

z
− 5

)
·

1
3

1− z
3

=

(
4

z
− 5

)
· 1

3

(
1 +

z

3
+
z2

9
+ · · ·

)
=

4

3z
+

(
4

9
− 5

3

)
+

(
4

27
− 5

9

)
z · · ·

so that

Res
z=0

5z − 4

z(z − 3)
=

4

3
and I =

8πi

3
.

13. Let the degree of the polynomials

P (z) = a0 + a1z + a2z
2 + · · ·+ anz

n, (an 6= 0).

and
Q(z) = b0 + b1z + b2z

2 + · · ·+ bmz
m, (bm 6= 0).

be such that m ≥ n + 2. By computing the residue at infinity, show that if all the zeros of
Q(z) are interior to a simple closed contour C, then∫

C

P (z)

Q(z)
dz = 0.
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See text problem 238[7]. Since C is outside all the zeros, then for R large enough, P (z)/Q(z)
is analytic in R ≤ |z| <∞ so ∞ is an isolated singularity. Let C0 be a negatively oriented
circle C0 (about 0) given by |z| = R. By the Residue Theorem at infinity

I =

∫
C

P (z)

Q(z)
dz = −

∫
C0

P (z)

Q(z)
dz = −2πi Res

z=∞

P (z)

Q(z)
= −2πiB.

Now, by the change of variables ζ = 1/z we get the formula

B = −Res
ζ=0

1

ζ2

P
(

1
ζ

)
Q
(

1
ζ

)
Multiplying top and bottom by ζm we find

1

ζ2
·
P
(

1
ζ

)
Q
(

1
ζ

) =
1

ζ2
·
a0 +

a1
ζ

+ · · ·+ an
ζn

b0 +
b1
ζ

+ · · ·+ bm
ζm

= ζm−n−2 · an + an−1ζ + · · ·+ a0ζ
n

bm + bm−1ζ + · · ·+ b0ζm

= ζm−n−2g(ζ).

Since an 6= 0 and bm 6= 0 the rational function g(ζ) is analytic at ζ = 0 such that cm−n−2 =
g(0) = an/bm 6= 0. Since m− n− 2 ≥ 0, the function

ζm−n−2g(ζ) = cm−n−2ζ
m−n−2 + cm−n−1ζ

m−n−1 + · · ·

has no negative powers, thus the residue B = 0.

14. Suppose that the function f(z) is analytic throughout the entire plane except for a finite
number of singular points z1, z2,. . . ,zn. Show that

Res
z=z1

f(z) + Res
z=z2

f(z) + · · ·+ Res
z=zn

f(z) + Res
z=∞

f(z) = 0.

See text problem 238[6]. Let C be a positively oriented (about 0) simple closed contour
that encloses all of the singular points. Let C0 be a circle |z| = R, where R is large enough
to enclose C and the singular points, which is oriented negatively with respect to the origin.
Then from the Residue Theorem for points inside,

1

2πi

∫
C

f(z) dz = Res
z=z1

f(z) + Res
z=z2

f(z) + · · ·+ Res
z=zn

f(z) (1)

On the other hand, since f is analytic on C and C0 and the annular region between, and
by the Residue Theorem at infinity since f(z) is analytic on |z| ≥ R,

1

2πi

∫
C

f(z) dz = − 1

2πi

∫
C0

f(z) dz = − Res
z=∞

f(z) (2)

Equating formulas (1) and (2) give the desired result.

15. Show that the the point z = πi is a pole. Determine the order of the pole m, and the
corresponding residue B.

f(z) =
1 + cosh z

(z2 + π2)3
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The denominator may be factored as

(z2 + π2)3 = (z − πi)3(z + πi)3

Using the fact that cosh(πi) = cos(π) = −1 and sinh(πi) = i sinπ = 0, the numerator may
be expressed as a power series by using the trigonometric identitiy

1 + cosh z = 1 + cosh
(
πi+ (z − πi)

)
= 1 + cosh(πi) cosh(z − πi) + sinh(πi) sinh(z − πi)
= 1− cosh(z − πi)

= −1

2
(z − πi)2 − 1

24
(z − πi)4 − 1

720
(z − πi)6 − · · ·

so that we may rewrite

f(z) =
1

(z − πi)3
· 1

(z + πi)3
· (1 + cosh z) =

φ(z)

z − πi

where

φ(z) = − 1

(z + πi)3
·
(

1

2
+

1

24
(z − πi)2 +

1

720
(z − πi)4 + · · ·

)
is analytic and non-vanishing at z = πi. Thus z = πi is a pole of order m = 1 and the the
residue is the lowest coefficient, namely

B = φ(πi) =
1

(πi+ πi)3
· lim
z→πi

1 + cosh z

(z − πi)2

Using l’Hospital’s Rule twice on these “ 0
0” forms one gets

B =
i

8π3
· lim
z→πi

sinh z

2(z − πi)
=

i

8π3
· lim
z→πi

cosh z

2
= − i

16π3
.

Equivalently, we could have expanded the first factor to find

1

(z + πi)3
=

(
1

2πi

1 + z−πi
2πi

)3

=

(
1

2πi
− z − πi

(2πi)2
+ · · ·

)3

=
i

8π3
− 3

16π4
(z − πi) + · · ·

so that

φ(z) = −
(

i

8π3
− 3

16π4
(z − πi) + · · ·

)
·
(

1

2
+

1

24
(z − πi)2 +

1

720
(z − πi)4 + · · ·

)
= − i

16π3
+

3

32π4
(z − πi) + · · ·

Thus confirming that

B = φ(πi) = − i

16π3
.

16. Find the residue for each single valued branch at the singular point.

f(z) =

√
z

z − 1

The square root function has two branches at z = 1 given in r > 0 and −π < θ < π for
n = 0, 1 by

p(z) = z
1
2 =
√
r e(θ+2πin)/2 = ±

√
reiθ/2
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Near z = 1 both branches are analytic and p(1) = ±1 6= 0. On the other hand, the
denominator

q(z) = z − 1

has a simple zero at z0 = 1. Thus the residue is given by

Res
z=z0

f(z) =
p(z0)

q′(z0)
=
±
√

1

1
= ±1.

17. Let CN be the positively oriented boundary of a square whose edges lie along the lines

x = ±
(
N +

1

2

)
and y = ±

(
N +

1

2

)
where N is a positive integer. Show∫

CN

dz

z2 sin z
= 2πi

[
1

6
+ 2

N∑
n=1

(−1)n

n2π2

]
.

Then, show that this integral tends to zero as N →∞ and conclude

1− 1

4
+

1

9
− 1

16
+ · · · =

∞∑
k=1

(−1)k+1

k2
=
π2

12
.

See the text problem 254[6]. Observe that zero is a pole of order m = 3 for the function

f(z) =
1

z2 sin z
=

1

z3
(
1− 1

6z
2 + 1

120z
4 − · · ·

)
Dividing, we find

1 +
1

6
z2 +

7

360
z4 + · · ·

1− 1

6
z2 +

1

120
z4 − · · ·

)
1 + 0 · z2 + 0z4 + · · ·

1− 1

6
z2 +

1

120
z4 − · · ·

1

6
z2 − 1

120
z4 + · · ·

1

6
z2 − 1

36
z4 + · · ·

7

360
z4 + · · ·

7

360
z4 + · · ·

0 + · · ·

so that the second coefficient of φ(z) gives the

Res
z=0

f(z) =
1

6
.

The other poles in the square are at z = ±nπ where n = 1, . . . , N . At z0 = ±nπ, the function
f(z) has a simple pole. Writing f(z) = p(z)/q(z) where p(z) = 1 and q(z) = z2 sin z, the
residue

Res
z=±nπ

f(z) =
p(±nπ)

q′(±nπ)
=

1

2z0 sin z0 + z20 cos z0
=

1

0 + (±nπ)2 cos(±nπ)
=

(−1)n

n2 π2

11



Hence, the Residue Theorem tells us the desired value of the integral

1

2πi

∫
CN

f(z) dz =

N∑
n=−N

Res
z=nπ

f(z) =
1

6
+ 2

N∑
n=1

(−1)n

n2 π2

In my “Practice Problems for the Second Midterm,” problem 17, I show that the integral
tends to zero as N →∞. Thus, taking N →∞, we find

0 =
1

6
+ 2

∞∑
n=1

(−1)n

n2 π2

Solving we find the desired sum

∞∑
n=1

(−1)n+1

n2
=
π2

12
.

You may have seen another derivation of this awesome formula using Fourier Series.

18. Evaluate the improper integral. ∫ ∞
0

x2

x4 + x2 + 1
dx

[From Kenneth S. Miller, Introduction to Advanced Complex Calculus, Dover, New York,
1970, p. 135; republication of Harper & Brothers, 1960.] The integral is obtained as the
limit

I = lim
R→∞

∫ R

0

x2

x4 + x2 + 1
dx

Because the integrand is bounded for x 6= 0 by an integrable function

x2

x4 + x2 + 1
≤ x2

x2(x2 + 1)
=

1

x2 + 1

which holds also for x = 0, the improper integral exists. Since the function

f(z) =
z2

z4 + z2 + 1

is even, real on the real axis and the poles miss the real axis

I =
1

2
lim
R→∞

∫
SR

z2

z4 + z2 + 1
dz

Where SR is the line segment from −R to R. Let CR denote the semicircle |z| = R with
positive orientation in the upper half plane. Solving for the zeros of the denominator, z2

satisfies a quadratic equation whose zeros are

z2 =
−1±

√
3 i

2
= e±2πi/3

Thus the roots are z = ±e±πi/3 or

α, ᾱ, β, β̄ where α =
1 +
√

3 i

2
, β =

−1 +
√

3 i

2

12



The simple closed contour SR + CR encloses two roots α and β if R > 1. By the Residue
Theorem ∫

SR+CR

f(z) dz = 2πi

(
Res
z=α

f(z) + Res
z=β

f(z)

)
Let us estimate the integral over CR. If R > 1 then the length of CR is LR = πR. The
function is bounded for any z ∈ CR (for R > 2) by∣∣∣∣ z2

z4 + z2 + 1

∣∣∣∣ =
|z|2

|z4 + z2 + 1|
≤ |z|2∣∣|z4| − |z2 + 1|

∣∣ ≤ |z|2

|z|4 − |z|2 − 1
=

R2

R4 −R2 − 1
= MR

Thus the integral is bounded by∣∣∣∣∫
CR

z2

z4 + z2 + 1
dz

∣∣∣∣ ≤ LRMR =
πR3

R4 −R2 − 1

which tends to zero as R→∞. Computing the residues, using l’Hospital’s Theorem,

Res
z=α

f(z) = lim
z→α

(z − α)z2

z4 + z2 + 1
= lim
z→α

3z2 − 2αz

4z3 + 2z
=

3α2 − 2α2

α(4α2 + 2)
=

α

4α2 + 2
=

α

2
√

3 i

Res
z=β

f(z) = lim
z→β

(z − β)z2

z4 + z2 + 1
= lim
z→β

3z2 − 2βz

4z3 + 2z
=

3β2 − 2β2

β(4β2 + 2)
=

β

4β2 + 2
=

β

−2
√

3 i

where we have used 2α2 = −1 +
√

3 i and 2β2 = −1−
√

3 i. Adding we find∫
SR

f(z) dz +

∫
CR

f(z) dz =
2π i

2
√

3 i
(α− β) =

π√
3

because α− β = 1. Letting R→∞ yields

I =
1

2

∫ ∞
−∞

f(z) dz =
π

2
√

3
.

19. Use residues to evaluate the integral.

I =

∫ ∞
0

x3 sinx dx

(x2 + 1)(x2 + 4)

Note that the function

f(z) =
z3

(z2 + 1)(z2 + 4)
=

z3

(z − i)(z + i)(z − 2i)(z + 2i)

decays like 1/|z| and is not integrable by itself and needs the sin z factor to make it integrable.
This integral may be integrated using Jordan’s Lemma, because f(z) is a rational function
without poles on the real axis, analytic outside |z| > 2 and for any |z| = R,

|f(z)| ≤ R3

(R2 − 1)(R2 − 4)
= MR

which tends to zero as R→∞. As usual, it is far easier to remember the trick in Jordan’s
Lemma that makes the estimates work, rather than the Lemma itself.

First of all, for z real, f(z) sin z = =m(f(z)eiz) is an even function so that the improper
integral exists if the limit exists,

I = =m

(
lim
R→∞

∫ R

0

f(z)eiz dz

)
= =m

(
lim
R→∞

1

2

∫
SR

f(z)eiz dz

)
,

13



where SR is the line segment from −R to R. Let CR be the semicircle |z| = R in the upper
halfplane in the counterclockwise direction. Estimating the integral,∣∣∣∣∫

CR

f(z)eiz dz

∣∣∣∣ =

∣∣∣∣∫ π

0

f(Reiθ)ei(R cos θ+iR sin θ)Reiθ dθ

∣∣∣∣
≤
∫ π

0

|f(Reiθ)|
∣∣∣ei(R cos θ+iR sin θ)

∣∣∣ Rdθ
≤
∫ π

0

MR e
−R sin θ Rdθ

=
R4

(R2 − 1)(R2 − 4)

∫ π

0

e−R sin θ dθ

=
2R4

(R2 − 1)(R2 − 4)

∫ π/2

0

e−R sin θ dθ

where we use the fact that sin θ is symmetric to the left and right of θ = π/2. Now Jordan’s
trick is the inequality for 0 ≤ θ ≤ π/2

sin θ ≥ 2θ

π
.

which just says that the straight line from the origin to (π/2, 1) lies under the curve y = sin θ.
Using it in the integral∣∣∣∣∫

CR

f(z)eiz dz

∣∣∣∣ ≤ 2R4

(R2 − 1)(R2 − 4)

∫ π/2

0

e−2Rθ/π dθ

=
πR3

(R2 − 1)(R2 − 4)

(
1− e−R

)
which tends to zero as R → ∞. The function f(z)eiz has simple poles inside the contour
at i and 2i. Thus the Residue Theorem tells us that∫

SR+CR

f(z)eiz dz = 2πi
(

Res
z=i

f(z)eiz + Res
z=2i

f(z)eiz
)

The residues may be evaluated as φ(z0) which is

Res
z=i

f(z)eiz = φ(i) =
i3ei·i

(i+ i)(i− 2i)(i+ 2i)
= −e

−1

6

Res
z=2i

f(z)eiz = φ(2i) =
(2i)3ei·2i

(2i− i)(2i+ i)(2i+ 2i)
=

2e−2

3

Letting R→∞, we see that the integral

I = =m

[
πi

(
−e
−1

6
+

2e−2

3

)]
=

π

6e2
(4− e).

20. Derive the integration formula

I =

∫ ∞
0

3
√
x

(x+ 8)(x+ 1)
dx =

2π

7
√

3

See the text problem 283[4]. Using the branch r > 0 and 0 ≤ θ ≤ 2π so that

f(z) =
z1/3

(z + 8)(z + 1)
=

e(1/3) log z

(z + 8)(z + 1)

14



f(z) is not analytic at zero and there are two branches on the positive real axis for θ = 0
and θ = 2π. We shall take the contour that consists of L1 from r to R where 0 < r < R
and θ = 0, CR which is the circle |z| = R from θ = 0 to θ = 2π, L2 line segment from R to
r at θ = 2π, and Cr which is the circle |z| = r from θ = 2π to θ = 0. The two segments L1

and L2 overlap but correspond to different branches of the cube root.

The improper integral

I = lim
r→0
R→∞

∫ R

r

3
√
x

(x+ 8)(x+ 1)
dx = lim

r→0
R→∞

∫
L1

e(1/3) log z

(z + 8)(z + 1)
dz

since θ = 0 on L1. On L2, θ = 2π so that

e(1/3) log z = e(1/3)(ln x+2πi) = e2πi/3e(1/3) ln x

so that, taking the revered direction into account,∫
L2

e(1/3) log z

(z + 8)(z + 1)
dz = −e2πi/3

∫
L1

e(1/3) log z

(z + 8)(z + 1)
dz

Finally we check that the other integrals vanish. Indeed for |z| = R > 8, because |z + 1| ≥
||z| − |1|| ≥ |z| − 1 = R− 1 and |z + 8| ≥ R− 8,∣∣∣∣ e(1/3)(lnR+θi)

(z + 8)(z + 1)

∣∣∣∣ ≤ R1/3

(R− 8)(R− 1)
= MR

Since CR has length LR = 2πR we get the estimate∣∣∣∣∫
CR

e(1/3)(lnR+θi)

(z + 8)(z + 1)
dz

∣∣∣∣ ≤MRLR =
2πR4/3

(R− 8)(R− 1)

which tends to zero as R→∞. For 0 < |z| = r < 1, because |z+1| ≥ |1−|z|| ≥ 1−|z| = 1−r
and |z + 8| ≥ 8− r, ∣∣∣∣ e(1/3)(ln r+θi)(z + 8)(z + 1)

∣∣∣∣ ≤ R1/3

(8− r)(1− r)
= MR

Since Cr has length Lr = 2πr we get the estimate∣∣∣∣∫
Cr

e(1/3)(lnR+θi)

(z + 8)(z + 1)
dz

∣∣∣∣ ≤MrLr =
2πr4/3

(8− r)(1− r)

which tends to zero as r → 0.
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Now the contour L1 +CR +L2 +Cr encloses the poles z = −1 and z = −8. By the Residue
Theorem, ∫

L1+CR+L2+Cr

z1/3

(z + 8)(z + 1)
dz = 2πi

(
Res
z=-1

f(z) + Res
z=-8

f(z)
)

(3)

Computing, we find

Res
z=-1

f(z) = φ(−1) =
e(1/3)(ln 1+πi)

(−1 + 8)
=
eπi/3

7

Res
z=-8

f(z) = φ(−8) =
e(1/3)(ln 8+πi)

(−8 + 1)
= −2eπi/3

7

Taking the limit as r → 0 and R→∞ in (3),

(1− e2πi/3)I = 2πi

(
eπi/3

7
− 2eπi/3

7

)
.

It follows that

−
√

3

2
I = − sin

(π
3

)
I =

e−πi/3 − eπi/3

2i
I = −π

7
so

I =
2π

7
√

3
.
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