
Math 3160 § 1.
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Second Midterm Exam Name: Exam Solutions
March 26, 2015

1. Let C be the contour consisting of the quarter circle |z| = 1 in the first quadrant and the
line segments from i to 0 to 1 with counterclockwise orientation as in the figure. Find

I =

∫
C

|z| dz

The function |z| is not analytic on the region bounded by C so we must perform the
parameterized integrals or replace parts of the integral by equivalent expressions.

If we parameterize each part, let’s denote the line segment from 0 to 1 by C1, the arc from
1 to i by C2 and the segment from i to 0 by C3. A parameterization of C1 is given by
z1(t) = t, 0 ≤ t ≤ 1 with |z1(t)| = t and z′1(t) = 1. A parameterization of C2 is given by
z2(t) = eit, 0 ≤ t ≤ π/2 with |z2(t)| = 1 and z′2(t) = ieit. A parameterization of C3 is given
by z3(t) = −it, −1 ≤ t ≤ 0 and |z3(t)| = −t and z′3(t) = −i. Thus

I =

∫
C1

|z| dz +

∫
C2

|z| dz +

∫
C3

|z| dz

=

∫ 1

0

t dt+

∫ π/2

0

ieit dt+

∫ 0

−1
(−t)(−i) dt

=

[
t2

2

]1
0

+

[
eit
]π/2
0

+

[
it2

2

]0
−1

=

(
1

2
− 0

)
+ (i− 1) +

(
0− i

2

)
=

1

2
(i− 1).

Alternately, we may replace each integrand by an analytic function. On C1, z = x so we
may replace |z| = x by z. On C2, |z| = 1. On C3, z = iy so we may replace |z| = y by −iz.
The three integrals are then evaluated using antiderivatives

I =

∫
C1

|z| dz +

∫
C2

|z| dz +

∫
C3

|z| dz

=

∫
C1

z dz +

∫
C2

dz +

∫
C3

−iz dz

=

[
z2

2

]1
0

+

[
z

]i
1

+

[
− iz

2

2

]0
i

=

(
1

2
− 0

)
+ (i− 1) +

(
−0− i

2

)
=

1

2
(i− 1).
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2. (a) Find all roots of the equation sinh z = 1.

One solution is to solve real equations for the real and imaginary parts. Thus

sinh(x+ iy) = sinhx cosh iy + coshx sinh iy = sinhx cos y + i coshx sin y = 1

yields the two real equations

sinhx cos y = 1,

coshx sin y = 0.

Because coshx ≥ 1 for all x, the second equation reduces to

sin y = 0

which has the solution y = πn for n ∈ Z. Then the first equation becomes

1 = cos y sinhx = cosnπ sinhx = (−1)n sinhx.

Since sinhx is an odd function, the roots are x = (−1)n sinh−1 1 = (−1)nw. To see
what this is we solve

1 = sinhw =
ew − e−w

2
or

0 = e2w − 2ew − 1.

By the quadratic formula,

ew =
2±

√
(−2)2 − 4 · 1 · (−1)

2
= 1±

√
2

Since the real exponential is positive, only th “+” root works, so w = ln(1 +
√

2).
Putting together the solution,

z = (−1)n ln(1 +
√

2) + nπi. for n ∈ Z.

Another solution is to use complex logs and square roots. Replacing the hyperbolic
sine with its definition,

1 = sinh z =
ez − e−z

2
so

e2z − 2ez − 1 = 0.

Using the quadratic formula

ez =
2 +

(
(−2)2 + 4

)1/2
2

= 1±
√

2

where the double valued square root function is used. Then taking logarithms

z = log
(

1±
√

2
)

For the “+
√

2” roots, we get

log
(

1 +
√

2
)

= ln
(

1 +
√

2
)

+ 2nπi; for n ∈ Z.
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For the “−
√

2” roots, because 1−
√

2 < 0 we get

log
(

1−
√

2
)

= ln
(√

2− 1
)

+ (2n+ 1)πi; for n ∈ Z.

This suffices, but can be sharpened a bit. Noting that

√
2− 1 =

1

1 +
√

2

we may write the “−
√

2” branch roots as

log
(

1−
√

2
)

= − ln
(

1 +
√

2
)

+ (2n+ 1)πi; for n ∈ Z.

Combining the two branches yields

z = (−1)n ln(1 +
√

2) + nπi; for n ∈ Z.

(b) Assuming that | <e z| ≤ a for some a > 0, find a bound for | sinh z|.

Expanding the hyperbolic sine we find

sinh(x+ iy) = sinhx cosh(iy) + coshx sinh(iy) = sinhx cos y + i coshx sin y

so

| sinh z|2 = sinh2 x cos2 y + cosh2 x sin2 y

= sinh2 x cos2 y + (1 + sinh2 x) sin2 y

= sinh2 x(cos2 y + sin2 y) + sin2 y

= sinh2 x+ sin2 y.

Thus if |x| = | <e z| ≤ a then since sinhx is odd and increasing,

| sinhx| = sinh |x| ≤ sinh a

so using also sin2 y ≤ 1,

| sinh z|2 ≤ sinh2 a+ 1 = cosh2 a.

or
| sinh z| ≤ cosh a.

3. Quick Answers.

(a) State why the function h(x, y) = ln(x2 + y2) is harmonic in <e z > 0.

h(x, y) is the real part of the function 2 Log z = 2 ln r + 2θi = ln(x2 + y2) + 2θi which
is analytic in the region r > 0 and −π < θ < π, which includes the right half plane.
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(b) Suppose f is analytic in the halfplane {z ∈ C : <e z > −1}, g is analytic to the
halfplane {z ∈ C : <e z < 1} and they are equal f(z) = g(z) if z is a point of the
imaginary axis <e z = 0. Explain why h(z) defines an entire function, where

h(z) =

{
f(z), if <e z > 0;

g(z), if <e z ≤ 0.

Since f and g are analytic in their own domains and agree on any line segment in the
imaginary axis common to both domains, they must be continuations of each other by
identity principle (also called the coincidence principle). Since the union of the two
half spaces is the entire plane, the resulting function is an analytic function on the
whole plane, thus is entire.

(c) Give an example of a domain D ⊂ C, a single valued analytic function f : D → C,
two points z1, z2 ∈ D and two contours C1 and C2, both starting at z1 and ending at
z2, such that ∫

C1

f(z) dz 6=
∫
C2

f(z) dz.

Let D = C − {0} be the punctured plane, f(z) =
1

z
, z1 = 1, z2 = −1, C1 be the arc

z(θ) = eiθ for 0 ≤ θ ≤ π and C2 be the arc z(θ) = e−iθ for 0 ≤ θ ≤ π. Then∫
C1

f(z) dz =

∫ π

0

ieiθ dθ

eiθ
=

∫ π

0

i dθ = πi

whereas ∫
C2

f(z) dz =

∫ π

0

−ie−iθ dθ
e−iθ

= −
∫ π

0

i dθ = −πi.

4. Let C be the diamond-shaped closed contour consisting of line segments from 1 to i to −1
to −i and back to 1 as in the figure. Assuming that the principal fifth root is used, find

J =

∫
C

z1/5 dz

The principal value is f(z) = z1/5 = 5
√
r eiθ/5 for r > 0 and −π < θ ≤ π which is

discontinuous at θ = π. One can write parameterized integrals for f(z) dz and notice
that the integration over an open interval extends continuously to the closed interval and
integrate as usual with real calculus. We prefer to use antiderivatives. Split the contour
into C = C1 + C2 where C1 is the upper half from 1 to i to −1. On C1, the principal
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logarithm agrees with log z = ln r + iθ in the branch −π2 < θ < 3π
2 . Using this logarithm,

the antiderivative is

F (z) =
5

6
r 5
√
r e6iθ/5

On C2, the principal logarithm agrees with log z = ln r + iθ in the branch − 3π
2 < θ < π

2 .
The antiderivative is again F (z), but using this logarithm instead. Thus we may compute

J =

∫
C1

z1/5 dz +

∫
C2

z1/5 dz =

∫ −1
1

z1/5 dz +

∫ 1

−1
z1/5 dz =

[
F (z)

]−1
1

+
[
F (z)

]1
−1

=
5

6

[
e6πi/5 − e0i

]
+

5

6

[
e0i − e−6πi/5

]
=

5

6

(
e6πi/5 − e−6πi/5

)
=

5

3
sinh

(
6πi

5

)
=

5i

3
sin

(
6π

5

)

5. Let CR be the upper half of the circle |z| = R from R to −R as in the figure. Show that the
integral over CR tends to zero as R→∞.

KR =

∫
CR

eiz dz

z2 + z + 2

Observe that the length of the semicircular contour is LR = πR. Also CR is parameterized
z(θ) = Reiθ = R cos θ + iR sin θ thus

|eiz| = |eiR(cos θ+i sin θ)| = |e−R sin θeiR cos θ| = e−R sin θ.

Since 0 ≤ θ ≤ π we have 0 ≤ sin θ ≤ 1 so that in this range −R sin θ ≤ 0 so

|eiz| ≤ e0 = 1.

It follows that for z ∈ CR and R > 2, by the reverse triangle inequality |z2 + z + 2| ≥∣∣|z|2 − |z + 2|
∣∣ ≥ |z|2 − |z + 2| ≥ |z|2 − |z| − 2, the integrand is bounded by∣∣∣∣ eiz

z2 + z + 2

∣∣∣∣ =
|eiz|

|z2 + z + 2|
≤ 1

|z|2 − |z| − 2
=

1

R2 −R− 2
= MR

Then the contour integral has the bound

|KR| =
∣∣∣∣∫
CR

eiz dz

z2 + z + 2

∣∣∣∣ ≤ LRMR =
πR

R2 −R− 2

which tends to zero as R→∞.
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