
Math 3160 § 1.
Treibergs −−σιι

First Midterm Exam Name: Solutions
February 12, 2015

1. Let z = −1+
√

3 i. Write z in polar coordinates. Find |z| and the principal argument Arg z.

Find z7 in polar and rectangular coordinates. Find 4
√
z and z

1
4 .

r = |z| =
√
x2 + y2 =

√
(−1)2 + (

√
3)2 =

√
4 = 2

and Θ = π − π

3
=

2π

3
. Since −π < Θ ≤ π, Θ is the principal argument, thus Arg z =

2π

3

and z = 2 exp

(
2π

3
i

)
.

z7 = (reiΘ)7 = 27 exp

(
7 · 2π

3
i

)
= 128 exp

(
14π

3
i

)
= 128 exp

(
4πi+

2π

3
i

)
= 128 exp

(
2π

3
i

)
= 64 · 2 exp

(
2π

3
i

)
= 64(−1 +

√
3 i) = −64 + 64

√
3i.

The principal fourth root is

4
√
z = (reiΘ)

1
4 = 4
√

2 exp

(
1

4
· 2π

3
i

)
= 4
√

2 exp
(π

6
i
)

= 4
√

2

(√
3

2
+
i

2

)
The set of fourth roots is

z
1
4 =

{
4
√

2 exp

(
1

4
·
(

2π

3
+ 2πk

)
i

)
: k ∈ Z

}
=

{
4
√

2 exp

(
πi

6
+
πik

2

)
: k = 0, 1, 2, 3

}
=

{
4
√

2 exp

(
πi

6

)
ωk : k = 0, 1, 2, 3

}
=

{
4
√

2

(√
3

2
+
i

2

)
, 4
√

2

(
−1

2
+
i
√

3

2

)
,−4
√

2

(√
3

2
+
i

2

)
, 4
√

2

(
1

2
− i
√

3

2

)}
where ω = i is a primitive fourth root of unity.

2. Determine for which z the complex derivative f ′(z) exists. Find f ′(z) at those points.

f(z) = e−2y sin 2x− ie−2y cos 2x.

The real and imaginary parts of f and their partial derivatives are

u(x, y) = e−2y sin 2x, v(x, y) = −e−2y cos 2x

ux(x, y) = 2e−2y cos 2x, vx(x, y) = 2e−2y sin 2x

uy(x, y) = −2e−2y sin 2x, vy(x, y) = 2e−2y cos 2x

The four partial derivative functions (1) exist at all points of C since f is a product and sum
of differentiable functions, (2) are continuous at all points of C since the ux, uy, vx, vy are
product and sum of continuous functions and (3) the Cauchy Riemann equations ux = vy
and uy = −vx hold at all points of C. Thus by the theorem giving sufficient conditions for
differentialility, f is differentiable at all points z ∈ C. The value of the derivative is given
by the formula

f ′(z) = ux(x, y) + ivx(x, y) = 2e−2y cos 2x+ 2ie−2y sin 2x
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3. (a) Show lim
z→∞

1 + 2z + 3z2

4 + 5z + 6z2
=

1

2
.

The infinite limit exists if the finite limit exists and has the same value. Change
variables by z = 1

ζ we find

lim
z→∞

1 + 2z + 3z2

4 + 5z + 6z2
= lim
ζ→0

1 + 2
ζ + 3

ζ2

4 + 5
ζ + 6

ζ2

= lim
ζ→0

ζ2 + 2ζ + 3

4ζ2 + 5ζ + 6
=

0 + 0 + 3

0 + 0 + 6
=

1

2
.

(b) Find the set in the z-plane whose image under the transformation w = z2 is the fourth
quadrant {w ∈ C : <ew > 0 and =mw < 0}.
One solution is to observe that w = ρeiφ where ρ > 0 and −π

2
< φ < 0. Since

w = z2 = (reiθ)2 = r2e2iθ = r2e2iθ−2πi we want r =
√
ρ and either φ = 2θ or

φ = 2θ − 2π. But this is the set{
reiθ : r > 0 and either −π

4
< θ < 0 or

3π

4
< θ < π

}
which is the union of two sectors.

Another solution is to solve the inequalities

0 < <ew = x2 − y2,

0 > =mw = 2xy.

The solution is in the second and fourth quadrants where 0 < y < −x or −x < y < 0,
respectively.

(c) Let E = {z ∈ C : |z − 2i| > 1} . Answer the following giving short reasons. Is the set
E is bounded? Is E connected? Is E open, closed or neither open nor closed? Does E
have any accumulation points? (If it has accumulation points, find one.)

E is the region strictly outside a circle of radius one and center 2i. E is unbounded
since it is the exterior of a disk and is not contained in any finite ball.

E is connected since between any pair of points of E there can be drawn a piecewise
linear path from point to point staying within E.

E is open because around every point of E there is open disk about the point strictly
inside E.

E has accumulation points. In fact, every point of z ∈ E is an accumulation point.
Since E is open, there is a disk D ⊂ E with center z. Every punctured disk about
z meets points of E, namely those in D. The points on the bounding circle are also
accumulation points

4. (a) Prove that the following limit does not exist: lim
z→0

=m z

z

Let f(z) =
=m z

z
. The limiting value must be consistent for different approaches to 0,

but it is not here. Taking the approach along the x-axis z = x+ 0i, f(x+ 0i) =
0

x
= 0

so lim
(x,0)→(0,0)

f(x + 0i) = 0. Taking the approach along the y-axis, z = 0 + yi gives

f(0 + yi) =
y

−yi
= i so lim

(0,y)→(0,0)
f(0 + yi) = i. Hence there is no complex limit.
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(b) Let f : C → C be a function and z0 ∈ C. State the DEFINITION: The function
is complex differentiable at z0. Using the rules for differentiation, find f ′(z0) when

f(z) =
z

1− z
and z0 6= 1. Then using the definition instead, give a direct proof that

f(z) =
z

1− z
is complex differentiable at z0 = 0.

We say that the function f : C → C is differentiable at z0 ∈ C if the following limit
exists:

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

The value of the limit is the complex derivative f ′(z0).

The quotient rule for differentiation yields

f ′(z) =
1 · (1− z)− z · (−1)

(1− z)2
=

1

(1− z)2
.

To show that the derivative exists, we need to find the limit of the difference quotient
at z0 = 0 where f(z0) = 0:

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
= lim
z→0

z
1−z − 0

z − 0
= lim
z→0

1

1− z
=

1

1− 0
= 1.

Since we can compute a limit of the difference quotients, the function is differentiable
at z0.

5. Let f : C→ C be a function and z0, w0 ∈ C be points. State the definition

w0 = lim
z→z0

f(z).

Using the definition of the limit, prove that

lim
z→i

(3z + 4i z) = 4 + 3i

The statement that f(z) has a limit w0 as z approaches z0 means that for every positive
number ε there is a positive number δ such that

|f(z)− w0| < ε whenever 0 < |z − z0| < δ. (1)

To show that
lim
z→i

(3z + 4i z) = 4 + 3i

observe that by the triangle inequality,

|f(z)− w0| = |3z + 4i z − 4− 3i|

= |3(z − i) + 3i+ 4i (z − i)− 4i(−i)− 4− 3i|

= |3(z − i) + 4i (z − i)|

≤ 3|z − i|+ 4|(z − i)| = 3|z − i|+ 4|z − i| = 7|z − i|.

Now for any positive number ε, let δ =
ε

7
. For any z ∈ C such that 0 < |z − z0| < δ we

have using the observation that

|f(z)− w0| = |3z + 4i z − 4− 3i| ≤ 7|z − i| < 7δ = ε.

Thus we have satisfied the condition (1) so the limit exists and equals w0 = 4 + 3i.
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