
Math 3160 § 1.
Treibergs

Second Midterm Exam Name: Practice Problems
March 10, 2015

1. Determine the singular points of the function and state why the function is analytic every-
where else:

f(z) =
z3 − 1

(z + 1)(z2 + 3z + 7)

Points z0 where the function fails to be analytic, but is analytic at some point in every
neighborhood of z0 are called singular points. The function is analytic at a point z0 if it is
analytic in some neighborhood, an open set containing z0.

The given function blows up where the denominator is zero (and the numerator is not zero.)
For this function, this occurs at the points

z0 = −1 and z0 =
−3±

√
32 − 4 · 1 · 7

2
= −3

2
±
√

19

2
i.

Away from these isolated points the denominator is nonzero so the complex derivative exists
because it is a rational function of z. Thus every other point ζ ∈ C is some distance r > 0
from these points, thus is analytic because the function is differentiable in the open disk
of radius r about ζ. Also these points are singular because the there is no derivative at
these points and every open set containing them contains other points where the function
is analytic.

2. Let A be an open subset of C and A∗ = {z ∈ C : z̄ ∈ A} be its reflection across the real
axis. Suppose that f(z) is analytic on A. Show that f(z̄) is analytic on A∗.

First observe that A∗ is open. That is because every point Z ∈ A∗ has an open neighborhood
U = B∗, namely, the reflection of the little open disk about z ∈ B ⊂ A.

Second, if f(z) = u(x, y) + iv(x, y), then g(z) = f(z̄) = u(x,−y) − iv(x,−y) and we show
that the Cauchy Riemann equations hold for g. By the Cauchy Riemann Equations for f ,

∂

∂x
(<e g) =

∂

∂x
u(x,−y) =

∂

∂x
u

∣∣∣∣
(x,−y)

=
∂

∂y
v

∣∣∣∣
(x,−y)

=
∂

∂y
[−v(x,−y)] =

∂

∂y
(=m g)

and

∂

∂y
(<e g) =

∂

∂y
u(x,−y) = − ∂

∂y
u

∣∣∣∣
(x,−y)

=
∂

∂x
v

∣∣∣∣
(x,−y)

= − ∂

∂x
[−v(x,−y)] = − ∂

∂x
(=m g).

For every point of A∗, both real partial derivatives exist and are continuous for g because
they are for f on A. Since the Cauchy Riemann equations hold as well, g is analytic on A∗.

3. Suppose that f(z) = u(x, y) + iv(x, y) is an analytic function defined on a domain D ⊂ C.
If au(x, y) + bv(x, y) = c, where a, b, c are real constants not all zero, then f(z) is constant
on A. Is the result still valid if a, b, c were allowed to be complex constants?

Observe that we can’t have both a = b = 0 because that implies that c = 0 too. Differenti-
ating we find

0 = aux + bvx

0 = auy + bvy = bux − avx.

∣∣∣∣ a b

b − a

∣∣∣∣ = −a2 − b2

Since the determinant of the coefficient matrix is strictly negative if a and b are real and
not both zero, we must have ux = vx = 0 everywhere in D. Hence f ′(z) = ux + ivx = 0
and since D is connected, f is constant.
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The result continues to hold if a, b.c are complex. If a2 + b2 6= 0 then the same argument
shows f ′ = 0 on D. But if b2 = −a2 then b = ±ia, both nonzero, and the system has only
one independent equation,

0 = aux ± aivx = a(ux ± ivx) =⇒ 0 = ux ± ivx.

But since both ux and vx are real, the real and imaginary parts of this equation say ux =
vx = 0 so f is again constant on D.

4. Let f be an entire function that equals a polynomial on [0, 1] on the real exis. Show that f
is a polynomial.

Let f(x) = a0 + a1x + · · ·+ anx
n on [0, 1]. Then f(z) and a0 + a1z + · · ·+ anz

n agree on
[0, 1], and both are analytic on C (that is, both are entire). By the Identity Theorem, if
two analytic functions agree on a line segment contained in the domain of both, then they
agree over the whole domain.

5. Prove the identity: sinh ez + sinh e−z = 2 sinh(cosh z) cosh(sinh z)

Identities are proved starting from one side of the equality and deducing the other side.

sinh ez + sinh e−z =
exp(ez)− exp(−ez)

2
+

exp(e−z)− exp(−e−z)
2

=
1

2

{
exp

(
ez + e−z

2
+
ez − e−z

2

)
− exp

(
−e

z + e−z

2
− ez − e−z

2

)

+ exp

(
ez + e−z

2
− ez − e−z

2

)
− exp

(
−e

z + e−z

2
+
ez − e−z

2

)}

=
1

2

{
exp (cosh z + sinh z)− exp (− cosh z − sinh z)

+ exp (cosh z − sinh z)− exp (− cosh z + sinh z)
}

=
1

2

{
exp (cosh z) exp (sinh z)− exp (− cosh z )exp(− sinh z)

+ exp (cosh z) exp (− sinh z)− exp (− cosh z )exp( sinh z)
}

=
1

2

{
exp (cosh z)− exp (− cosh z)

}{
exp (sinh z )+ exp(− sinh z)

}
= 2 sinh(cosh z) cosh(sinh z).

6. Find all values z such that
e3z+i = −2.

We write the equation as

e3xe(3y+1)i = e3z+i = −2 = 2eπi

so that
3x = ln 2 and 3y + 1 = π + 2nπ, (n ∈ Z);

and so

z =
1

3
ln 2 +

1

3
(π − 1 + 2nπ) i, (n ∈ Z).
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7. Show that

log(i1/3) =
1

3
log i.

The logarithm is a multiple valued function. First, the three cube roots of i = eπi/2 are

e(π/2+2πn)i/3 (n ∈ Z)

so that the numbers corresponding to n = 0, 1, 2 are the distinct roots

eπi/6, e5πi/6, e3πi/2,

Then

log
(
eπi/6

)
= ln 1 +

(
1

6
+ 2n

)
πi, (n ∈ Z),

log
(
e5πi/6

)
= ln 1 +

(
5

6
+ 2n

)
πi, (n ∈ Z),

log
(
e3πi/2

)
= ln 1 +

(
3

2
+ 2n

)
πi, (n ∈ Z).

Since
5

6
=

1

6
+

2

3
and

3

2
=

1

6
+ 2 · 2

3
, their union is

log
(
i1/3

)
=

(
1

6
+

2n

3

)
πi, (n ∈ Z).

On the other hand,

log i = ln 1 +

(
1

2
+ 2n

)
πi, (n ∈ Z)

so that
1

3
log i =

(
1

6
+

2n

3

)
πi, (n ∈ Z)

which is the same as log
(
i1/3

)
.

8. Verify the following relation for the inverse function.

arccoth z =
1

2
log

z + 1

z − 1
.

arccoth z are the solutions w of the equation

z = cothw =
coshw

sinhw
=
ew + e−w

ew − e−w
=
e2w + 1

e2w − 1
.

Solving for e2w yields
e2w + 1 = z(e2w − 1)

or

e2w =
z + 1

z − 1

Finally, taking logarithm gives the solution.
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9. Show that for different choices of z1 and z2 the following expression may or may not be
valid:

Log
z1

z2
= Log z1 − Log z2.

The issue is whether or not the differnce of arguments remains in the domain of the principal
value. Thus if we have zk = rke

iΘk then Log zk = log zk in the branch −π < Θk ≤ π.
Subtracting arguments in this range implies

−2π < Θ1 −Θ2 < 2π

which may put them out of range for the principal value if Θ1 −Θ2 ≤ −π or Θ1 −Θ2 > π.
For example if z1 = 1 + i =

√
2eπi/4 and z2 = −1 + i =

√
2e3πi/4 we have

Log
z1

z2
= Log(−i) = −π

2
i =

[
ln 2 +

π

4
i
]
−
[
ln 2 +

3π

4
i

]
= Log z1 − Log z2.

On the other hand, if z1 = 1− i =
√

2e−πi/4 and z2 = −1 + i =
√

2e3πi/4 we have

Log
z1

z2
= Log(−1) = πi 6= −πi =

[
ln 2− π

4
i
]
−
[
ln 2 +

3π

4
i

]
= Log z1 − Log z2.

10. Find (1 + i)3i and its principal value.

1 + i =
√

2e(1/4+2n)πi for n ∈ N. Its powers are thus

(1 + i)3i = e3i log(1+i) = exp

(
3i

{
ln
√

2 +

(
1

4
+ 2n

)
πi

})
, (n ∈ Z)

= exp

(
−3π

4
+ 6nπ

)
exp

(
3 ln 2

2
i

)
, (n ∈ Z)

Its principal value corresponds to N = 0 or

P.V. (1 + i)3i = exp

(
−3π

4

)
exp

(
3 ln 2

2
i

)
11. Find the roots of the equation cos z = 3.

Expressing the real and imaginary parts we find

cos z = cosx cosh y − i sinx sinh y = 3

which reduces to two real equations

cosx cosh y = 3 and sinx sinh y = 0.

The second says either sinh y = 0 which implies y = 0 or sinx = 0 which implies

x = nπ, (n ∈ N).

If y = 0 then the first equation becomes

cosx cosh y = cosx cosh 0 = cosx = 3

which has no real solution because | cosx| ≤ 1. Thus we have to solve the first equation in
the second case x = nπ,

cosx cosh y = cosnπ cosh y = (−1)n cosh y = 3.
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But cosh y ≥ 1 so that this equation only has solutions if n is even, in which case y =
cosh−1 3, namely, real s that solves

3 = cosh s =
1

2
(es + e−s).

Equivalently,
0 = e2s − 6es + 1

or

es =
6±
√

62 − 4 · 1 · 1
2

= 3± 2
√

2.

Noting that 3 + 2
√

2 and 3− 2
√

2 are reciprocals, we may write all solutions as

z = 2nπ ± i ln(3 + 2
√

2), (n ∈ Z).

12. Show that tanh z = −i tan(iz) and
d

dz
tanh z = sech2 z.

We use the identities sinh z = −i sin iz and cosh z = cos iz. Then

tanh z =
sinh z

cosh z
=
−i sin iz

cos iz
= −i tan iz.

Also, by the definitions of sinh z and cosh z and the quotient rule

d

dz
tanh z =

d

dz

sinh z

cosh z
=

d

dz

ez − e−z

ez + e−z
=

(ez + e−z) (ez + e−z)− (ez + e−z) (ez − e−z)
(ez + e−z)

2

=

(
e2z + 2 + e−2z

)
−
(
e2z − 2 + e−2z

)
(ez + e−z)

2 =
4

(ez + e−z)
2 =

1

cosh2 z
= sech2 z.

13. Evaluate the following integral, assuming <e z < 0.∫ ∞
0

ezt dt

This is an improper integral. Observing that
d

dt

ezt

z
= ezt we obtain

∫ ∞
0

ezt dt = lim
T→∞

∫ T

0

ezt dt = lim
T→∞

[
ezt

z

]T
0

= lim
T→∞

[
ezT

z
− 1

z

]
= −1

z
.

For z = x+ iy, the latter limit depends on the estimate

|ezT | = |exT eiyT | = exT

which tends to zero as T →∞ because x = <e z < 0.
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14. let C denote the right half of the circle |z| = 2 in the counterclockwise direction. Consider
the two given parametric representations z1(θ) and z2(y) of C. Find the reparameterization
θ = φ(y) such that z2(y) = z1[φ(y)] and check that φ has positive derivative.

z1(θ) = 2eiθ,
(
−π

2
≤ θ ≤ π

2

)
z2(y) =

√
4− y2 + iy, (−2 ≤ y ≤ 2).

Putting the first representation in rectangular coordinates gives

x = 2 cos θ and y = 2 sin θ.

Equating the ratio we find

y√
4− y2

=
y

x
=

2 sin θ

2 cos θ
= tan θ

or

θ = φ(y) = Atn

(
y√

4− y2

)
,

(
−π

2
≤ θ ≤ π

2

)
.

To see that z2(y) = z1[φ(y)], we note that cos(Atn t) = 1/
√

1 + t2 and sin(Atn t) =
t/
√

1 + t2, so

<e z1(φ(y)) = 2 cos

(
Atn

(
y√

4− y2

))
=

2√
1 +

y2

4− y2

=
2
√

4− y2

√
4

= <e z2(y)

and

=m z1(φ(y)) = 2 sin

(
Atn

(
y√

4− y2

))
=

2y√
4− y2√

1 +
y2

4− y2

=
2y√

4
= =m z2(y).

For −2 < y < 2 we find

φ′(y) =
1

1 +

(
y√

4− y2

)2 ·

√
4− y2 +

y2√
4− y2(√

4− y2
)2 =

1

4
· 4√

4− y2
> 0
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15. Using the contour C shown in the figure, evaluate the integral

∫
C

<e(eiz) dz

The function is the derivative in C

F ′(z) =
d

dz

eiz

i
= eiz

Thus the integral is independent of path, and its value may be computed using the end
points z1 = 1 and z2 = −2 to give

I =

∫
C

<e(eiz) dz = <e

(∫
C

f(z) dz

)
= <e (F (z2)− F (z1)) .

But

F (z2)− F (z1) =

[
eiz

i

]−2

1

=
e−2i

i
− ei

i
= −i

[
cos(−2) + i sin(−2)− cos 1− i sin 1

]
so

I = − sin 2− sin 1.

16. Let C denote the positively oriented circle |z| = 5 about the origin. For the branch at angle
α ∈ R, with its corresponding log z = ln r + iθ where α < θ < α+ 2π, find∫

C

z−2/3 dz.

We have z(θ) = 5eiθ for α < θ < α+ 2π so dz = 5ieiθ dθ. Also

z−2/3 z′(θ) = exp

(
−2

3
log(z(θ))

)
· 5ieiθ = 5i exp

(
−2

3
ln 5 +

1

3
iθ

)
As this extends continuously to the interval α ≤ θ ≤ α + 2π, we may integrate using real
antiderivatives as usual∫

C

z−2/3 dz =

∫ α+2π

α

z−2/3 z′(θ) dθ = i
3
√

5

[
eiθ/3

i
3

]α+2π

α

= 3
3
√

5
[
ei(α+2π)/3 − eiα/3

]
= 3

3
√

5
[
e2πi/3 − 1

]
eiα/3.
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17. Let CN denote the boundary of the square formed by the lines

x = ±
(
N +

1

2

)
π and y = ±

(
N +

1

2

)
π

where N is a positive integer and CN is given the counterclockwise orientation. Show that
the integral tends to zero as N →∞. ∫

CN

dz

z2 sin z

We bound the absolute value. The length of the square is LN = 4(2N + 1)π. To bound the
integrand, we observe that

sin z = sin(x+ iy) = sinx cos iy + cosx sin iy = sinx cosh y + i cosx sinh y.

It follows that

| sin z|2 = sin2 x cosh2 y + cos2 x sinh2 y

= sin2 x(1 + sinh2 y) + cos2 x sinh2 y

= sin2 x+ sinh2 y ≥ sin2 x

so that on the vertical lines,

| sin z| ≥ | sinx| =
∣∣∣∣sin(± [N +

1

2

]
π

)∣∣∣∣ = 1.

The estimate also showed that
| sin z| ≥ | sinh y|

so that on the horizontal lines, since sinh y is increasing in y and N ≥ 0,

| sin z| ≥ | sinh y| =
∣∣∣∣sinh

(
±
[
N +

1

2

]
π

)∣∣∣∣ = sinh

([
N +

1

2

]
π

)
≥ sinh

(π
2

)
≥ 1.

So on all four sides of the square | sin z| ≥ 1. Thus we may estimate the integrand∣∣∣∣ 1

z2 sin z

∣∣∣∣ =
1

|z|2 | sin z|
≤ 1(

N + 1
2

)2
π2

= MN

because |z| ≥ |x| on the verticals and |z| ≥ |y| on the horizontals, which are both equal(
N + 1

2

)
π.

Then the contour integral may be estimated∣∣∣∣∫
CN

dz

z2 sin z

∣∣∣∣ ≤ LNMN =
4(2N + 1)π(
N + 1

2

)2
π2

=
16

(2N + 1)π
.

Thus the value of the integral tends to zero as N →∞.
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18. Find the integral, where the integrand is computed using the principal branch and C is any
contour from z = 3 to z = −2 that, except for its end points, lies above the real axis.∫

C

z−2i dz

The restriction on C means that in polar coordinates, for z ∈ C we have r > 0 and
0 ≤ θ ≤ π. In this range

z−2i = exp (−2iLog z) , (0 ≤ θ ≤ π).

For this range of θ’s, Log z = log z where the second logarithm has the branch cut along
the negative imaginary axis R−π/2 so −π2 < θ < 3π

2 . The function has an antiderivative on
the domain D = C−R−π/2, namely

F (z) =
z−2i+1

−2i+ 1
=

1 + 2i

5
exp((−2i+ 1) log z).

Hence the integral is found by evaluating the antiderivative function at the end points
z1 = 3 = 3e0·i and z2 = −2 = 2eπi of the contour C ⊂ D∫

C

z−2i dz = F (−2)− F (3) =
1 + 2i

5

(
exp[(−2i+ 1)(ln 2 + πi)]− exp[(−2i+ 1) ln 3]

)
= −1 + 2i

5

(
2e2πe−2i ln 2 + 3e−2i ln 3

)
.

19. Using the contour C which is a unit square with corners 0, 1, 1 + i and i shown in the
figure, evaluate the integral

∫
C

cos

(
3 +

1

z − 3

)
dz

Observe that the integrand function

f(z) = cos

(
3 +

1

z − 3

)
is the composition of an entire function with a rational function which has only one sin-
gularity at z = 3. So f(z) is analytic in the punctured plane, D = C − {3}. Since C is a
simple, closed contour in D, by the Cauchy-Goursat Theorem, the integral is zero.
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20. Show that the integral on the real axis

I =

∫ ∞
−∞

x2 + 4− 3i

(x+ 2i)4
dx = 0.

Let

f(z) =
z2 + 4− 3i

(z + 2i)4
.

Since f decays quadratically in |z|, the function is integrable on R. For R > 0, letting CR
denote the line segment from −R to R, we have

I = lim
R→∞

∫
CR

z2 + 4− 3i

(z + 2i)4
dz.

Observe that the only singularity of the rational function f(z) is at z = −2i so it is analytic
in D = C− {−2i}. Let GR denote the arc of the circle |z| = R in the upper half plane.

Thus CR +GR is a simple closed contour in D so that, by the Cauchy Goursat Theorem,

0 =

∫
CR+GR

f(z) dz =

∫
CR

f(z) dz +

∫
GR

f(z) dz.

We show that the limit of the second integral vanishes as R→∞, thus so does the first, so
I = 0.

We estimate the second integral. The length of the contour is LR = πR. Also for z ∈ ΓR
and R > 3, by the triangle inequalty

|f(z)| = |z
2 + 4− 3i|
|z + 2i|4

≤ |z|
2 + |4− 3i|∣∣|z| − |3i|∣∣4 =

R2 + 5

(R− 3)4
= MR

Hence ∣∣∣∣∫
GR

f(z) dz

∣∣∣∣ ≤ LR ·MR =
πR(R2 + 5)

(R− 3)4

which tends to zero as R→∞, completing the argument.
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