
Math 3160 § 1.
Treibergs

First Midterm Exam Name: Practice Problems
February 5, 2015

1. Calculate the following expressions

a)
(1 + 2i)3 − (1− i)3

(3 + 2i)3 − (2 + i)3
b) (a+ bω + cω2)(a+ bω2 + cω) where ω =

−1 +
√

3 i

2
.

Since

(1 + 2i)3 = 1 + 3(2i) + 3(2i)2 + (2i)3 = 1 + 6i− 12− 8i = −11− 2i

(1− i)3 = 1 + 3(−i) + 3(−i)2 + (−i)3 = 1− 3i− 3 + i = −2− 2i

(3 + 2i)3 = 33 + 3 · 32(2i) + 3 · 3(2i)2 + (2i)3 = 27 + 54i− 36− 8i = −9 + 46i

(2 + i)3 = 23 + 3 · 22i+ 3 · 2i2 + i3 = 8 + 12i− 6− i = 2 + 11i

we get

(1 + 2i)3 − (1− i)3

(3 + 2i)3 − (2 + i)3
=
−11− 2i− (−2− 2i)

−9 + 46i− (2 + 11i)
=

−9

−11 + 35i

=
(−9)(−11− 35i)

(−11 + 35i)(−11− 35i)
=
−117 + 27 + 26i+ 315i

112 + 352
=

99 + 315i

1346
.

Also ω = e2πi/3 so ω + ω2 = −1 and ω3 = 1. Thus

(a+bω + cω2)(a+ bω2 + cω) = a2 + abω2 + acω + baω + b2ω3 + bcω2 + caω2 + cbω4 + c2ω3

= (a2 + b2 + c2)ω3 + (ab+ ac+ bc)(ω + ω2) = a2 + b2 + c2 − ab− ac− bc

2. For complex numbers α and β, prove using only the definition of the operations, modulus
and conjugation that

αβ = ᾱ β̄, | <eα| ≤ |α| ≤ |<eα|+ | =mα|

Write α = (a, b) and β = (c, d), we have

αβ = (a, b)(c, d)

= (ac− bd, ad+ bc)

= (ac− bd,−ad− bc)
= (ac− (−b)(−c), a(−d) + (−b)c)
= (a,−b)(c,−d)

= (a, b) (c, d)

= ᾱ β̄.

Also
| <eα| = | <e(a, b)| = |a| =

√
a2 + 02 ≤

√
a2 + b2 = |(a, b)| = |α|

and

|α| = |(a, b)| =
√
a2 + b2 =

√
|a|2 + |b|2 ≤

√
|a|2 + 2|a||b|+ |b|2

=
√

(|a|+ |b|)2 = |a|+ |b| = | <eα|+ | =mα|.
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3. Prove the identity and interpret it geometrically.

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2).

We have

|z1 + z2|2 + |z1 − z2|2 = (z1 + z2)(z1 + z2) + (z1 − z2)(z1 − z2)

= z1z̄1 + z1z̄2 + z2z̄1 + z2z̄2 + z1z̄1 − z1z̄2 − z2z̄1 + z2z̄2

= 2z1z̄1 + 2z2z̄2 = 2(|z1|2 + |z2|2).

It is the parallelogram law. It says that in the parallelogram with vertices 0, z1, z2 and
z1 + z2 the sums of the squares of the lengths of the diagonals equals twice the sum of the
squares of the lengths of the sides.

4. Prove that |(1 + i)z3 + iz| < 3
4 if |z| < 1

2 .

|(1 + i)z3 + iz| = |((1 + i)z2 + i)z|
=
∣∣(1 + i)z2 + i

∣∣ |z|
≤
(
|(1 + i)z2|+ |i|

)
|z|

=
(
|1 + i| |z|2 + 1

)
|z|

= (
√

2|z|2 + 1)|z|

≤

(√
2

4
+ 1

)
1

2

=

√
2 + 4

8
<

2 + 4

8
=

3

4
.

5. By a purely geometric argument, prove that |z − 1| ≤
∣∣|z| − 1

∣∣+ |z| | arg z|.
Let γ be the arc of the circle centered at the origin and radius |z| starting at |z| on the real
axis and ending at z. Its length, |z|| arg z| is greater than the distance between endpoints.
Thus the triangle inequality for the three points 1, |z| and z in the plane gives

|z−1| = dist(1, z) ≤ dist(1, |z|)+dist(|z|, z) ≤ dist(1, |z|)+length(γ) =
∣∣|z|−1

∣∣+ |z| | arg z|.

6. Solve the following equations:

a) |z| − z = 1 + 2i; b) |z|+ z = 2 + i.

a) Write z = x+ iy so that the equation becomes√
x2 + y2 − x− iy = 1 + 2i

so that y = −2 and so
√
x2 + (−2)2 − x = 1. Adding and squaring,

x2 + 4 = (1 + x)2 = 1 + 2x+ x2

so 3 = 2x or x = 3
2 . One checks that z = 3

2 − 2i solves the equation.

b) This time the equation becomes√
x2 + y2 + x+ iy = 2 + i

so that y = 1 and so
√
x2 + 12 + x = 2. Subtracting and squaring,

x2 + 1 = (2− x)2 = 4− 4x+ x2

so −3 = −4x or x = 3
4 . One checks that z = 3

4 + i solves the equation.
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7. What are the loci of points z that satisfy the following relations

a) |z − 2|+ |z + 2| = 5, b) 0 < <e(iz) < 1, c)|z| = <e z + 1.

a) This equation says dist(z, 2)+dist(z,−2) = 5. This is an ellipse with center at the origin,
with major axis along the x axis and minor along the y-axis with major and minor radii

a = 5
2 and b =

√
( 5
2 )2 − 22 = 3

2 .

b) <e(iz) = <e(ix− y) = −y so the locus is the horizontal slab {x+ iy : −1 < y < 0}.

c) The equation is
√
x2 + y2 = x+ 1 so x2 + y2 = x2 + 2x+ 1 so y2 = 2x+ 1 which is the

parabola opening in the positive x-direction given by x = 1
2y

2 − 1
2 .

8. Prove that every complex number of unit modulus (except z = −1) can be represented in the
form

z =
1 + it

1− it
where t is a real number.

One observes that |1 + iy| = |1− it| so that all such z satisfy

|z| = |1 + iy|
|1− it|

= 1,

thus have unit modulus. It remains to see if the Arg z takes all values in (−π, π). But
Arg(1 + it) = Atn t (triangle has base 1 and height t) which takes all values in (−π2 ,

π
2 ) as t

runs through all real values. Also Arg(1−it) = −Atn t which also takes all values in (−π2 ,
π
2 )

as t runs through all real values. Thus arg z = Arg(1+it)−Arg(1−it) = Atn t−(−Atn t) =
2 Atn t which takes all values in (−π, π) as t runs through all reals. Note, too, that since
2 Atn t is a strictly increasing function, there is a one-to-one correspondence between the
real numbers t and the complex numbers in the circle about the origin excluding −1.

9. Suppose that |z1| = |z2| = |z3| > 0. Show that

arg
z3 − z2
z3 − z1

=
1

2
arg

z2
z1
.

This is just the geometric statement that the angle between two points on a circle viewed
from a third point on the circle is half the angle viewed from the center. We may suppose
that z1 6= z3 and z2 6= z3 for the left side to be defined. Thus write z1 = reia, z2 = eib and
z3 = eic where a, b, c are real numbers such that c < a, b < c+ 2π. It follows that

1

2
arg

z2
z1

=
1

2
arg

reib

reia
=
b− a

2
.

Observe that

arg
z3 − z2
z3 − z1

= arg
reic − reib

reic − reia
= arg

eic(1− ei(b−c))
eic(1− ei(b−c))

= arg
ei(b−c) − 1

ei(a−c) − 1
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Using the trigonometric identities,

eiθ − 1 = cos θ − 1 + i sin θ

= cos
(
2 · θ2

)
− 1 + i sin

(
2 · θ2

)
= cos2

(
θ
2

)
− sin2

(
θ
2

)
− 1 + 2i sin

(
θ
2

)
cos
(
θ
2

)
= −2 sin2

(
θ
2

)
+ 2i sin

(
θ
2

)
cos
(
θ
2

)
= 2 sin

(
θ
2

) [
− sin

(
θ
2

)
+ i cos

(
θ
2

)]
= 2 sin

(
θ
2

) [
cos
(
θ
2 + π

2

)
+ i sin

(
θ
2 + π

2

)]
= 2 sin

(
θ
2

)
ei(

θ
2+

π
2 )

Since 0 < a− c < 2π and 0 < b− c < 2π, it follows that

arg
z3 − z2
z3 − z1

= arg
ei(b−c) − 1

ei(a−c) − 1
= arg

2 sin
(
b−c
2

)
ei(

b−c
2 +

π
2 )

2 sin
(
a−c
2

)
ei(

a−c
2 +

π
2 )

=

(
b− c

2
+
π

2

)
−
(
a− c

2
+
π

2

)
=
b− a

2
.
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