
Math 3160 § 1.
Treibergs

Final Exam Name: Practice Problems
April 24, 2006

Problems taken from the Midterm exam given Feb. 27, 1998 and the Final exam
given Mar. 17, 1998. Half of our final exam will focus on material since the last
midterm. The other half will be comprehensive. Questions on this review cover
mainly problems since the last mid.

(F.1.) Find a Laurent series for f(z) =
1

z − i
+

1

z + 2i
which converges in the annulus 1 < |z| < 2

centered at zero.

(F.2.) Suppose c is the contour consisting of straight line segments from 2 + 2i to −2 + 2i to

−2− 2i to 2− 2i and back to 2 + 2i. Find both

∫
c

sin z dz

(z − i)2
and

∫
c

sin z dz

(z − 3i)2
. Write the answers

in the form x+ iy. (Explanation required!)

(F.3.) Suppose we wanted to have a single valued (analytic) cube root function f(z) = z1/3 defined
on a domain C − {0}. (That is a function f : C − {0} → C such that f(z)3 = z for all z 6= 0.)
Show that there is no single valued analytic cube root defined on all of C − {0}. Show that if
for some fixed ϑ0, in the domain D that misses the points reiϑ0 for r ≥ 0, then there are three
distinct single valued analytic cube root functions on D.

(F.4a.) Find Res
z=0

(
1

1− exp(z2)

)
.

(F.4b.) Show that if z0 is a pole of order m ≥ 1 for f(z), then limz→z0 f(z) =∞

(F.5.) Find I =

∫ ∞
0

dx

x4 + 4
using contour integration. Find a contour and formulate an

expression for the improper integral I involving a limit of an integral over the contour. Ac-
count for all pieces of your contour and explain why the “garbage terms” go to zero. [ Hint:
z4 + 4 = (z + 1 + i)(z + 1− i)(z − 1 + i)(z − 1− i) ]

(F.6a.) Suppose f(z) is analytic in a punctured disk around z0 and has a simple pole at z0.
Explain why

Res
z=z0

f(z) = lim
z→z0

(z − z0)f(z)

(F.6b.) Assuming that the series converges near zero, find Res
z=0

1

z2 + a3z3 + a4z4 + · · ·

(F.7.) Find two Laurent series for the function f(z) =
1

(z − 1)2
centered at zero, one conver-

gent near z0 = 0, the other convergent far away from z0 = 0. What are the precise regions of
convergence for your two series?

(F.8.) Find I1 =

∫ ∞
0

x dx

1 + x3
. Find a contour and formulate an expression for the improper

integral I1 involving a limit of an integral over the contour. Account for all pieces of your contour

and explain why the “garbage terms” go to zero. Hints: Res
z=z0

∞∑
n=−∞

cn(z − z0)n = c−1,

Res
z=−1

z

1 + z3
= −1

3
, Res

z=eπi/3

z

1 + z3
=

1−
√

3i

6
, Res

z=−eπi/3

z

1 + z3
=

1 +
√

3i

6
.
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(F.9.) Find

∫ ∞
−∞

sin(x) dx

1 + x2
using complex analysis. You have to justify why the “garbage terms”

go to zero.

More Problems

(E.1.) Find two Laurent series for h(z) =
1

(1− z)2
centered at z0 = i. For what values of z do

each of the series converge?

(E.2.) Find the Taylor’s series for f(z) =
1

1 + z2
about z0 = 2i. For which values of z does your

series converge?

(E.3.) Find the following integrals using Residues: (a.)

∫ 2π

0

d ϑ

4 + sin2 ϑ
, (b.)

∫ ∞
−∞

cos(x) dx

x2 − x+ 2

(E.4.) Compute the inverse Laplace transform of F (s) =
1

s3 + 8
, ie., for t > 0, find the Principal

Value integral taken along the infinite contour c, the straight line <e z = γ oriented in the upward
direction, where γ > 0 is a constant large enough so that all the poles of F (s) occur to the left

of c. f(t) =
1

2πi
P.V.

∫
c

est ds

s3 + 8

(E.5.) Suppose that f(z) is an entire function whose value is bounded over the entire plane by
|f(z)| ≤ 99 for all z ∈ C. Show that f(z) is everywhere constant.

Solutions of the final.

(F.1.) Find a Laurent series for f(z) =
1

z − i
+

1

z + 2i
which converges in the annulus 1 < |z| < 2

centered at zero.

The poles are i and −2i. We take the Maclaurin series of the second term which converges
in |z| < 2 and the Laurent series for the first term that converges for |z| > 1. Then the Laurent
series of f(z) is the sum of the two series.

1

z + 2i
=

1

2i
(
1 + z

2i

) =
1

2i

(
1−

( z
2i

)
+
( z

2i

)2

−
( z

2i

)3

+ · · ·
)

=
1

2i
+
z

4
− z2

8i
− z3

16
+ · · ·

1

z − i
=

1

z
(
1− i

z

) =
1

z

(
1 +

i

z
+

(
i

z

)2

+ · · ·

)
=

1

z
+

i

z2
− 1

z3
− i

z4
+ · · ·

f(z) = · · · − i

z4
− 1

z3
+

i

z2
+

1

z
+

1

2i
+
z

4
− z2

8i
− z3

16
+ · · ·

(F.2.) Suppose c is the contour consisting of straight line segments from 2 + 2i to −2 + 2i to

−2 − 2i to 2 − 2i and back to 2 + 2i. Find both I1 =

∫
c

sin z dz

(z − i)2
and I2 =

∫
c

sin z dz

(z − 3i)2
. Write

the answers in the form x+ iy.

The singularity of f(z) =
sin z

(z − i)2
is z0 = i, inside the contour. Thus

I1 =

∫
c

f(z) dz = 2πiRes
z=z0

f(z) = 2πi
d

dz

∣∣∣∣
z=z0

sin z = 2πi cos(z0) = 2πi cos(i) = 2πi cosh(1).
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On the other hand, the only pole of g(z) =
sin z

(z − 3i)2
is z0 = 3i which is outside the contour c.

Hence g is analytic on and inside the contour, making I2 = 0 by the Cauchy-Goursat Theorem.

(F.3.) Suppose we wanted to have a single valued (analytic) cube root function f(z) = z1/3 defined
on a domain C − {0}. (That is a function f : C − {0} → C such that f(z)3 = z for all z 6= 0.)
Show that there is no single valued analytic cube root defined on all of C− {0}. Show that if for
some fixed ϑ0 the domain D misses the points reiϑ0 for r ≥ 0, then there are three distinct single
valued analytic cube root functions on D.

Suppose there is an analytic function on C−{0} such that (f(z))3 = z for all z 6= 0. Then, for
all points 0 < |z| ≤ 1 we must have |f(z)| ≤ 1. It follows that z0 = 0 is a removeable singularity.
Thus, the function can be given a Maclaurin series for 0 < |z| < 1

f(z) = a0 + a1z + a2z
2 + · · ·

which extends to 0 as an analytic function, which we still call f(z). Since f(0) = 0, let the order
of the zero z0 = 0 be m ∈ N so that there is an analytic function g(z) defined near zero so that
g(0) 6= 0 and so that f(z) = zmg(z). Now, using the fact that the cube is known,

z = (f(z))3 = (zmg(z))
3

= z3m(g(z))3

where g3 is an analytic function defined near zero which doesn’t vanish near zero. Since the order
of zeros must be the same, we get 1 = 3m. But there is no integer solution for this equation
hence there is no such f .

Now, suppose that we make a branch cut. For D = {reiϑ : r > 0, ϑ0 < ϑ < ϑ0 + 2π} we
define three functions for k = 0, 1, 2,

fk(reiϑ) = r1/3e(ϑ+2πk)i/3

These are analytic on D, and are cube roots(
fk(reiϑ)

)3
=
(
r1/3e(ϑ+2πk)i/3

)3

= re(ϑ+2πk)i = reiϑ.

Moreover, they are distinct functions since for k = 0, 1, 2,

fk(reϑ0+π) = r1/3e(ϑ0+π+2πk)i/3 = r1/3e(ϑ0+π)i/3, r1/3e(ϑ0+3π)i/3, r1/3e(ϑ0+5π)i/3

which are all distinct.

(F.4a.) Find R = Res
z=z0

(
1

1− exp(z2)

)
.

The residue is c−1 in the Laurent expansion f(z) =
∑∞
−∞ cnz

n in some region 0 < |z| < R.
Expanding the power series,

1

1− exp(z2)
=

1

1−
(
1 + z2 + 1

2z
4 + 1

6z
6 + · · ·

) = − 1

z2 + 1
2z

4 + 1
6z

6 + · · ·

= − 1

z2

(
1

1 + 1
2z

2 + 1
6z

4 + · · ·

)
= − 1

z2

(
1− 1

2
z2 +

1

12
z4 + · · ·

)
= − 1

z2
+

1

2
− 1

12
z2 + · · ·

using long division. Thus R = c−1 = 0.
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(F.4b.) Show that if z0 is a pole of order m ≥ 1 for f(z), then limz→z0 f(z) =∞

If f(z) has a pole of order m at z0 then f(z) = (z−z0)−mφ(z) where φ is an analytic function
near z0 such that φ(z0) 6= 0. Now, since φ is continuous near z0 as it is analytic, we may find an
ε > 0 so that |φ(z0) − φ(z)| < 1

2 |φ(z0)| whenever R = |z − z0| < ε. It follows from the reverse
triangle inequality that

|φ(z)| = |φ(z0)− (φ(z0)− φ(z))| ≥ |φ(z0)| − |φ(z)− φ(z0)| ≥ |φ(z0)| − 1

2
|φ(z0)| = 1

2
|φ(z0)| > 0

whenever |z − z0| < ε. It follows that the limit is infinite because when |z − z0| < ε,

|f(z)| =
∣∣∣∣ φ(z)

(z − z0)m

∣∣∣∣ ≥ |φ(z)|
|z − z0|m

≥
1
2 |φ(z0)|
Rm

→∞

whenever R→ 0 which means whenever z → z0.

(F.5.) Find I =

∫ ∞
0

dx

x4 + 4
using contour integration. Find a contour and formulate an

expression for the improper integral I involving a limit of an integral over the contour. Ac-
count for all pieces of your contour and explain why the “garbage terms” go to zero. [ Hint:
z4 + 4 = (z + 1 + i)(z + 1− i)(z − 1 + i)(z − 1− i) ]

As the integrand f(z) = (z4 + 4)−1 is even, we have

2I = P.V.

∫ ∞
−∞

f(x) dx = lim
R→∞

∫ R

−R
f(x) dx = lim

R→∞

{∮
cR

f(z) dz −
∫
c′′
f(z) dz

}
=
π

4
+ 0

where cR is a closed contour consisting of a straight line segment from −R to R followed by the
semicircular arc c′′ given by z = Reit for 0 < t < π. For R >

√
2, two of the four poles lie within

cR, namely z0 = ±1 + i. It follows that the contour integral equals∮
cR

f(z) dz = 2πi

(
Res

z=−1+i
f(z) + Res

z=1+i
f(z)

)
= 2πi

(
1

(z + 1 + i)(z − 1 + i)(z − 1− i)

∣∣∣∣
−1+i

+
1

(z + 1 + i)(z + 1− i)(z − 1 + i)

∣∣∣∣
1+i

)

= 2πi

(
1

(2i)(−2 + 2i)(−2)
+

1

(2 + 2i)(2)(2i)

)
=
π

4
.

Now let’s check that the “garbage term” goes to zero. Intuitively, f(z) decays like R−4 as
|z| = R → ∞, whereas the length pf c′′ is πR. Hence the garbage integral decays like πR−3

as R → ∞. To make a rigorous argument, we observe from the reverse triangle inequality that
|R4e4ti + 4| ≥ |R4e4ti| − |4| = R4 − 4. Now estimating the garbage integral, putting z = Reit

gives ∣∣∣∣∫
c′′

dz

z4 + 4

∣∣∣∣ =

∣∣∣∣∫ π

0

Rieit dt

R4e4it + 4

∣∣∣∣ ≤ ∫ π

0

|Rieit| dt
|R4e4it + 4|

≤
∫ π

0

Rdt

R4 − 4
=

πR

R4 − 4
→ 0

as R→∞.
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(F.6a.) Suppose f(z) is analytic in a punctured disk around z0 and has a simple pole at z0.
Explain why

Res
z=z00

f(z) = lim
z→z0

(z − z0)f(z)

A simple pole means that there is only one term in the principal part. Expressing the function
as a Laurent series in some 0 < |z − z0| < R,

f(z) =
b1

(z − z0)
+ a0 + a1(z − z0) + a2(z − z0)2 + · · ·

The residue is defined to be Res
z=z0

f(z) = b1. Now, computing the limit,

lim
z→z0

(z − z0)f(z) = lim
z→z0

(z − z0)

(
b1

(z − z0)
+ a0 + a1(z − z0) + a2(z − z0)2 + · · ·

)
= lim
z→z0

(
b1 + a0(z − z0) + a1(z − z0)2 + a2(z − z0)3 + · · ·

)
= b1

(F.6b.) Assuming that the series converges near zero, find R = Res
z=0

1

z2 + a3z3 + a4z4 + · · ·
The residue is the b1 term of the Laurent expansion in some 0 < |z| < R. By long division

1

z2 + a3z3 + a4z4 + · · ·
=

1

z2

(
1

1 + a3z + a4z2 + · · ·

)
=

1

z2

(
1− a3z + (a2

3 − a4)z2 + · · ·
)

=
1

z2
− a3

z
+ (a2

3 − a4) + · · ·

Thus R = b1 = −a3.

(F.7.) Find two Laurent series for the function f(z) =
1

(z − 1)2
centered at zero, one conver-

gent near z0 = 0, the other convergent far away from z0 = 0. What are the precise regions of
convergence for your two series?

f(z) has a pole at z0 = 1. The Maclaurin series for (1 − z)−1 converges exactly if |z| < 1.
Hence the same is true for its square

f(z) =
1

1− z
· 1

1− z
=
(
1 + z + z2 + z3 + · · ·

)
·
(
1 + z + z2 + z3 + · · ·

)
= 1 + 2z+ 3z2 + 4z3 + · · ·

which converges exactly when |z| < 1. (The series blows up at z = 1 and converges for |z| < 1 by
the ratio test.)

Similarly, the Laurent Series converging for exactly |z| > 1 is the product

f(z) =

(
1

z − 1

)2

=
1

z2

(
1

1− 1
z

)2

=
1

z2

(
1 +

1

z
+

1

z2
+ · · ·

)2

=
1

z2

(
1 +

2

z
+

3

z2
+ · · ·

)
=

1

z2
+

2

z3
+

3

z4
+ · · ·

( e.g., the series diverges at z = 1 and converges for 1/|z| < 1 by the ratio test.)
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(F.8.) Find I1 =

∫ ∞
0

x dx

1 + x3
. Find a contour and formulate an expression for the improper

integral I1 involving a limit of an integral over the contour. Account for all pieces of your contour

and explain why the “garbage terms” go to zero. Hints: Res
z=z0

∞∑
n=−∞

cn(z − z0)n = c−1,

Res
z=−1

z

1 + z3
= −1

3
, Res

z=eπi/3

z

1 + z3
=

1−
√

3i

6
, Res

z=e−πi/3

z

1 + z3
=

1 +
√

3i

6
.

Observe that z3 + 1 = (z + 1)(z − ω)(z − ω̄) where ω = eπi/6 so ω3 = ω̄3 = −1. Now
let cR denote the contour consisting of the line segment from 0 to R, then the circular arc c′′

given by z = Reit for 0 < t < 2π/3, and then the straight line segment c′ from Rω2 to 0. By
parameterizing z = ω2t we find∫

c′

z dz

z3 + 1
= −

∫ R

0

(ω2t)ω2 dt

ω6t3 + 1
= −ω4

∫ R

0

t dt

t3 + 1
= ω

∫ R

0

t dt

t3 + 1
.

Thus, we may find the integral by adding the real axis part and the c′ part to get

(1 + ω)I1 = lim
R→∞

(∮
cR

z dz

z3 + 1
−
∫
c′′

z dz

z3 + 1

)
Now, the only pole inside the contour is z0 = ω = 1

2 +
√

3
2 i so that the first integral is given by∮

cR

z dz

z3 + 1
= 2πi Res

z=eπi/3

z

1 + z3
= 2πi

1−
√

3i

6
=

2π(
√

3 + i)

6
=

2π(1 + ω)

3
√

3

Thus if the “garbage term” goes to zero, I1 = 2π
3
√

3
. The intuition for the vanishing of the garbage

terms is that the function decays like R/R3 = 1/R2 on c′′ and the length of c′′ is 2πR/3 so that
the integral is bounded by about 2π/(3R)→ 0 as R→∞. To make a rigorous estimate, observe
that by the reverse triangle inequality, |R3e3iy+1| ≥ |R3e3it|−|1| = R3−1. Then, parameterizing
by z = Reit, we have∣∣∣∣∫

c′′

z dz

z3 + 1

∣∣∣∣ =

∣∣∣∣∣
∫ 2π/3

0

(Reit)Rieit dt

R3e3it + 1

∣∣∣∣∣ ≤
∫ 2π/3

0

|Reit| |Rieit| dt
|R3e3it + 1|

≤
∫ 2π/3

0

R2 dt

R3 − 1
=

2πR2

3(R3 − 1)
→ 0

as R→∞.

(F.9.) Find

∫ ∞
−∞

sin(x) dx

1 + x2
using complex analysis. You have to justify why the “garbage terms”

go to zero.

Observe that =m(eix) = sinx. Taking cR to be the contour consisting of a straight line
segment from −R to R and the arc c′′ given by z = Reit for 0 < t < π, the integral is

I = P.V.

∫ ∞
−∞

sin(x) dx

1 + x2
= lim
R→∞

∫ R

−R

sin(x) dx

1 + x2

= lim
R→∞

=m

(∮
cR

exp(iz) dz

1 + z2
−
∫
c′′

exp(iz) dz

1 + z2

)
= 0

The first integral is computed from the residue formula. The second is a “garbage” term that
tends to zero. The only pole within cR is z0 = i. Thus for R > 1,∮

cR

exp(iz) dz

1 + z2
= 2πi

(
Res
z=i

exp(iz)

(z − i)(z + i)

)
= 2πi

(
exp(iz)

z + i

∣∣∣∣
z=i

)
= πe−1
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which is real.
We have

exp(iz) = exp(iReit) = exp(iR(cos t+ i sin t)) = exp(−R sin t+ iR cos t) = e−R sin teiR cos t,

so that because in this range, sin t ≥ 0, we have | exp(iz)| ≤ 1. Also, by the reverse triangle
inequality, |R2e2it + 1| ≥ |R2e2it| − |1| = R2 − 1. Intuitively, the garbage term vanishes because
the integrand decays like 1/R2, the length of c′′ grows like R, so the integral decays like 1/R as
R→∞. The rigorous check is as follows:∣∣∣∣∫

c′′

exp(iz) dz

1 + z2

∣∣∣∣ =

∣∣∣∣∫ π

0

exp(iReit)Rieit dt

R2e2it + 1

∣∣∣∣ ≤ ∫ π

0

1 · |Rieit| dt
|R2e2it + 1|

≤
∫ π

0

Rdt

R2 − 1
=

πR

R2 − 1
→ 0

as R→∞.

Solutions of the additional problems.

(E.1.) Find two Laurent series for h(z) =
1

(1− z)2
centered at z0 = i. For what values of z do

each of the series converge?

h(z) is analytic at i, and the closest pole to i is at 1, thus the series will converge in |z − i| <
|1 − i| =

√
2 exactly. The easiest way to find the series is to square the geometric sum. On

|z − i| <
√

2 we have

h(z) =

(
1

1− z

)2

=

(
1

1− i− (z − i)

)2

=
1

(1− i)2

(
1

1− z−i
1−i

)2

=
i

2

(
1 +

z − i
1− i

+

[
z − i
1− i

]2

+ · · ·

)2

=
i

2

(
1 + 2

z − i
1− i

+ 3

[
z − i
1− i

]2

+ · · ·

)

=
i

2
+ i

z − i
1− i

+
3i

2

[
z − i
1− i

]2

+ · · ·

For the other region |z − i| >
√

2 we factor the other way.

h(z) =

(
1

z − 1

)2

=

(
1

z − i− (1− i)

)2

=
1

(z − i)2

(
1

1− 1−i
z−i

)2

=
1

(z − i)2

(
1 +

1− i
z − i

+

[
1− i
z − i

]2

+ · · ·

)2

=
1

(z − i)2

(
1 + 2

1− i
z − i

+ 3

[
1− i
z − i

]2

+ · · ·

)

=
1

(z − i)2
+

2(1− i)
(z − i)3

+
3(1− i)2

(z − i)4
+ · · ·

We can check that the series diverges when z = 1 and converges if |1− i|/|z − i| < 1 by the ratio
test.

(E.2.) Find the Taylor’s series for f(z) =
1

1 + z2
about z0 = 2i. For which values of z does your

series converge?

The poles of f(z) are ±i, so that the series will converge for |z− 2i| < |i− 2i| = 1 and diverge
otherwise. We can find the coefficients using the Taylor’s formula, or simply multiplying series.
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The first converges in |z − 2i| < 1 and the second in |z − 2i| < 3. The product converges in the
smaller disk.

f(z) =

(
1

i− z

)(
1

i+ z

)
=

(
1

−i− (z − 2i)

)(
1

3i+ (z − 2i)

)
=

1

(−i)(3i)

(
1

1− i(z − 2i)

)(
1

1− i
3 (z − 2i)

)

=
1

3

(
1 + i(z − 2i) + i2(z − 2i)2 + · · ·

)(
1 +

i

3
(z − 2i) +

i2

32
(z − 2i)2 + · · ·

)
=

1

3

(
1 +

4

3
i(z − 2i) +

13

32
i2(z − 2i)2 + · · ·

)
=

1

3
+

4i

9
(z − 2i)− 13

27
(z − 2i)2 + · · ·

(E.3.) Find the following integrals using Residues:

(a.) I1 =

∫ 2π

0

d ϑ

4 + sin2 ϑ
, (b.) I2 =

∫ ∞
−∞

cos(x) dx

x2 − x+ 2

The trick for the first integral is to notice that this one is exactly a contour integral. By
setting z = eiϑ for real ϑ we have z = cosϑ + i sinϑ and 1

z = e−iϑ = cosϑ − i sinϑ. Hence
1
2i

(
z + 1

z

)
= sinϑ and dz = ieiϑdϑ = iz dϑ. Thus the integral becomes a contour integral

I1 =

∮
|z|=1

dz
iz

4− 1
4

(
z + 1

z

)2 =
4

i

∮
|z|=1

z dz

16z2 − (z2 + 1)
2 = 4i

∮
|z|=1

z dz

(z2 − 4z + 1)(z2 + 4z + 1)

The poles are therefore z = ±2 ±
√

3. Only z1 = 2 −
√

3 and z2 = −2 +
√

3 fall within |z| = 1.
Therefore we may use the residues

I1 = −8π

(
Res

z=2−
√

3

z

(z2 − 4z + 1)(z2 + 4z + 1)
+ Res
z=−2+

√
3

z

(z2 − 4z + 1)(z2 + 4z + 1)

)
= −8π

(
z

(z − 2−
√

3)(z2 + 4z + 1)

∣∣∣∣
z=2−

√
3

+
z

(z2 − 4z + 1)(z + 2 +
√

3)

∣∣∣∣
z=−2+

√
3

)

= −8π

(
− 1

16
√

3
− 1

16
√

3

)
=

π√
3

For the second integral, observe that <e(eix) = cosx. Taking cR to be the contour consisting
of a straight line segment from −R to R and the arc c′′ given by z = Reit for 0 < t < π, the
integral becomes

I2 = P.V.

∫ ∞
−∞

cos(x) dx

x2 − x+ 2
= lim
R→∞

∫ R

−R

cos(x) dx

x2 − x+ 2

= lim
R→∞

<e

(∮
cR

exp(iz) dz

z2 − z + 2
−
∫
c′′

exp(iz) dz

z2 − z + 2

)
The first integral is computed from the residue formula. The second is a “garbage” term that

tends to zero. The poles are z0 = 1
2 ±

√
7

2 i. The only pole within cR is z0 = 1
2 +

√
7

2 i. Thus for
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R >
√

2, ∮
cR

exp(iz) dz

z2 − z + 2
= 2πi Res

z= 1
2 +
√

7
2 i

(
exp(iz)

z2 − z + 2

)

= 2πi

 exp(iz)

z − 1
2 +

√
7

2 i

∣∣∣∣∣
z= 1

2 +
√

7
2 i

 =
2πe−

√
7/2
(
cos 1

2 + i sin 1
2

)
√

7
.

Thus, I2 =
2πe−

√
7/2 cos(1/2)√

7
, provided that the garbage term goes to zero.

We have

exp(iz) = exp(iReit) = exp(iR(cos t+ i sin t)) = exp(−R sin t+ iR cos t) = e−R sin teiR cos t,

so that because in this range, sin t ≥ 0, we have | exp(iz)| ≤ 1. Also, by the reverse triangle
inequality, |R2e2it −Reit + 2| ≥ |R2e2it| − |Reit − 2| ≥ R2 −R− 2. Intuitively the garbage term
vanishes because the integrand decays like 1/R2, the length of c′′ grows like R, so the integral
decays like 1/R as R→∞. The rigorous check is as follows:∣∣∣∣∫

c′′

exp(iz) dz

z2 − z + 2

∣∣∣∣ =

∣∣∣∣∫ π

0

exp(iReit)Rieit dt

R2e2it −Reit + 2

∣∣∣∣ ≤ ∫ π

0

| exp(iReit)| |Rieit| dt
|R2e2it −Reit + 2|

≤
∫ π

0

1 ·Rdt
R2 −R− 2

=
πR

R2 −R− 2
→ 0

as R→∞.

(E.4.) Compute the inverse Laplace transform of F (s) =
1

s3 + 8
ie. for t > 0, find the Principal

value integral taken along the infinite contour c, the straight line <e z = γ oriented in the upward
direction, where γ > 0 is a constant large enough so that all the poles of F (s) occur to the left
of c.

f(t) =
1

2πi
P.V.

∫
c

est ds

s3 + 8

Let ω = 2eπi/3 = 1 +
√

3i so that ω3 = ω̄3 = −8. Taking cR to be the contour consisting
of a straight line segment from γ − Ri to γ + Ri and the arc c′′ given by z = Reiτ for α =
arccos(γ/R) < τ < 2π − arccos(γ/R) = β. Hence, the integral

2πif(t) = P.V.

∫
c

etz dz

z3 + 8
= lim
R→∞

∫ γ+Ri

γ−Ri

etz dz

z3 + 8
= lim
R→∞

(∮
cR

etz dz

z3 + 8
−
∫
c′′

etz dz

z3 + 8

)
The first integral is computed from the residue formula. The second is a “garbage” term that
tends to zero. The poles are z0 = ω, ω̄,−2. Thus for R > 2,∮

cR

etz dz

z3 + 8
= 2πi

(
Res
z=ω

etz

z3 + 8
+ Res
z=ω̄

etz

z3 + 8
+ Res
z=−2

etz

z3 + 8

)
= 2πi

(
etz

(z − ω̄)(z + 2)

∣∣∣∣
z=ω

+
etz

(z − ω)(z + 2)

∣∣∣∣
z=ω̄

+
etz

(z − ω)(z − ω̄)

∣∣∣∣
z=−2

)

= 2πi

(
etω

(ω − ω̄)(ω + 2)
+

etω̄

(ω̄ − ω)(ω̄ + 2)
+

e−2t

(−2− ω)(−2− ω̄)

)

Thus, f(t) =
etω

(ω − ω̄)(ω + 2)
+

etω̄

(ω̄ − ω)(ω̄ + 2)
+

e−2t

(−2− ω)(−2− ω̄)
, provided that the garbage

term goes to zero.
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On this range of τ , we have <e(Reiτ ) = R cos τ ≤ γ.

exp(tz) = exp(tReiτ ) = exp(tR(cos τ + i sin τ)) = etR cos τeitR sin τ ,

so that because in this range, R cos τ ≤ γ, we have | exp(tz)| ≤ etγ . Also, by the reverse triangle
inequality, |R3e3it+8| ≥ |R3e3it|−|8| = R3−8. Intuitively, the garbage term vanishes because the
integrand decays like etγ/R3, the length of c′′ grows like πR, so the integral decays like πetγ/R2

as R→∞. The rigorous check is as follows. Note that 0 < α < Π/2 and 3π/2 < β < π so∣∣∣∣∫
c′′

etz dz

z3 + 8

∣∣∣∣ =

∣∣∣∣∣
∫ β

α

exp(tReiτ )Rieiτ dτ

R3e3iτ + 8

∣∣∣∣∣ ≤
∫ β

α

| exp(tReiτ )| |Rieiτ | dτ
|R3e3iτ + 8|

≤
∫ β

α

Retγ dt

R3 − 8
≤
R
(
eβγ − eαγ

)
γ(R3 − 8)

≤
R
(
e2πγ − 1

)
γ(R3 − 8)

→ 0

as R→∞.

(E.5.) Suppose that f(z) is an entire function whose value is bounded over the entire plane by
|f(z)| ≤ 99 for all z ∈ C. Show that f(z) is everywhere constant.

Since f(z) is entire, it is analytic on the disk |z| < R+ 1 for all R > 0. Then the Maclaurin’s
expansion of f , which is defined on and inside the disk |z| ≤ R is given by

f(z) = a0 + a1z + a2z
2 + a3z

3 + · · ·

Using Cauchy’s formula for the k-th coefficient, and the bound |f(z)| ≤ 99,

|ak| =

∣∣∣∣∣ 1

2πi

∮
|z|=R

f(s) ds

sk+1

∣∣∣∣∣ =

∣∣∣∣ 1

2πi

∫ 2π

0

f(Reit)Rieit dt

Rk+1e(k+1)it

∣∣∣∣
≤ 1

2π

∫ 2π

0

|f(Reit)| |Rieit| dt
Rk+1|e(k+1)it|

≤ 1

2π

∫ 2π

0

99 dt

Rk
=

99

Rk

Now, for k ≥ 1, since R can be taken to be arbitrarily large, only |ak| = 0 can be possible. It
follows that f(z) = a0 + 0 + 0 + 0 + · · · , or f is a constant.
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