
Math 3160 § 1.
Treibergs

Second Midterm Exam Name: Midterm Exam Solutions
March 30, 2006

1. Find all (−1)
i
. Find the principal value of (−1)

i
.

−1 = eπi so that log(−1) = {ln 1 + (π + 2πk)i : k ∈ Z}. Thus

(−1)i = exp (i log(−1)) = exp (i {(π + 2πk)i : k ∈ Z}) = {exp (−π + 2πk) : k ∈ Z}.

The principal value is gotten by using the principal logarithm by taking k = 0. Thus
P.V. (−1)i = e−π.

2. Let C be the rectangular contour consisting of line segments from 2 to 2 + i to −2 + i to −2
and back to 2. Find

I =

∮
C

2z dz

4z2 + 1

There is more than one way to skin a cat. Here is the solution I gave in 2006 based on the
Cauchy Integral Formula.

Factoring the denominator we find 4z2 +1 = 2(2z+ i)(z− 1
2 i) so that the poles of the function

are at ± 1
2 i. Only the upper one is inside the box. Putting f(z) =

z

2z + i
we have by the Cauchy

Integral Theorem,

I =

∮
c

f(z) dz

z − 1
2 i

= 2πif

(
1

2
i

)
= 2πi ·

1
2 i

2 · 12 i + i
=
πi

2
.

Now here is a solution using the corollary to the Cauchy-Goursat Theorem instead (within
the scope of our 2015 class!)

Notice that the denominator factors

4z2 + 1 = (2z + i)(2z − i)

so that the integrand

f(z) =
2z dz

4z2 + 1

is singular at z = ±i/2. Only i/2 is within C. Using partial fractions, we can write

f(z) =
1
2

2z + i
+

1
2

2z − i

so that the integral equals

I =
1

2

∫
C

dz

2z + i
+

1

2

∫
C

dz

2z − i
= 0 +

1

2

∫
C

dz

2z − i

because
1

2z + i
is analytic inside and on C so by the Cauchy-Goursat Theorem its integral van-

ishes. Let C ′ be the circular contour

∣∣∣∣z − i

2

∣∣∣∣ =
1

3
with the counterclockwise orientation. Note

that C ′ is interior to C and surrounds the singularity at i/2. Thus
1

2z − i
is analytic on C and C ′

as well as in the annular region inside C and outside C ′. It follows from the multiply connected
Cauchy-Goursat Theorem, that the integrals over C and over C ′ are the same, thus

I =
1

2

∫
C′

dz

2z − i
.
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The easiest way to finish is just to parameterize the circle z(θ) =
1

3
eiθ +

i

2
for 0 ≤ θ ≤ 2π and

compute

I =
1

2

∫
C′

dz

2z − i
=

1

2

∫ 2π

0

z′(θ) dθ

2z(θ)− i
=

1

2

∫ 2π

0

i
3e
iθ dθ

2
3e
iθ

=
i

4

∫ 2π

0

dθ =
πi

2
.

A similar computation results if we don’t do partial fractions. Also we could have spit the integral
into an upper and lower contour and used antiderivatives involving logarithms instead of the direct
computation around C ′.

3. Let C be the line segment from 1 to i. Find

J =

∫
C

z̄2 dz

Because z̄2 is not analytic, we have to do the integral by hand. Parameterizing the linear

path, z(t) = (1 − t) + t i so that dz = (−1 + i) dt. Also z(t) = (1 − t) − t i so that z(t)
2

=
(1− t)2 − t2 − 2(1− t)t i = 1− 2t− 2(t− t2) i. Thus

J =

∫ 1

0

[
1− 2t− 2(t− t2)i

]
(−1 + i) dt = (−1 + i)

[
t− t2 −

(
t2 − 2

3
t3
)

i

]1
0

=
1 + i

3

4. Let C be the contour consisting of five line segments 1 to eπi/3 to e2πi/3 to −1 to e4πi/3 to
e5πi/3. Find

K =

∫
C

dz

z

The contour starts at z1 = 1 and ends at z2 = e5πi/3. Take the branch of logarithm defined
for z = reiϑ by F (z) = log z = ln r+ iϑ where −π4 < ϑ < 7π

4 . This branch is analytic in a domain
(C slit from origin in the ϑ = −π/4 direction) containing the contour. Furthermore, it is the
antiderivative there: F ′(z) = 1

z in the slit domain. Thus

K = F (z2)− F (z1) = i
5π

6
− i · 0 =

5πi

6
.
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5. Suppose that the three closed contours are as in the diagram. Explain why∮
c3

cos z dz

z2 − 5z + 6
=

∮
c1

cos z dz

z2 − 5z + 6
+

∮
c2

cos z dz

z2 − 5z + 6
.

-1 1 2 3
c1 c2

c3

Let f(z) =
cos z

z2 − 5z + 6
. Since z2 − 5z + 6 = (z − 2)(z − 3) is zero only at z1 = 2 or z2 = 3

and since cos z is entire, the integrand f(z) is analytic everywhere except at the two points z1, z2
inside the simple, closed, positively oriented contours c1 c2, resp. Since all the contours are
disjoint, and that c3 is a closed, simple, positively oriented contour which surrounds the other
two, then f(z) is analytic on all of the ci and in the region R which is inside of c3 and outside both
c1 and c2. The conclusion follows from the extension of the Cauchy Goursat Theorem to multiply
connected domains. The argument goes as follows. Cut R into two pieces along the x-axis and
call the line segments on the x-axis in R from c3 to c1 by α, from c1 to c2 by β and from c2 to c3
by γ. Now let the upper portion of R be denoted R+ and the lower R−. Let the contours also be
split into upper and lower portions, e.g., c2 = c+2 + c−2 . Now the usual Cauchy-Goursat Theorem
applies to R+ because f is analytic in it and on its boundary α−c+1 +β−c+2 +γ+c+3 . Similarly,
f is analytic on R− and the boundary of R− is −γ− c−2 −β− c−1 −α+ c−3 . The Cauchy Goursat
integrals around ∂R+ and ∂R− give

0 =

∫
α−c+

1 +β−c+
2 +γ+c+

3

f(z) dz, 0 =

∫
−γ−c−2 −β−c

−
1 −α+c−3

f(z) dz

Adding,

0 =

∫
α−c+

1 +β−c+
2 +γ+c+

3 −γ−c
−
2 −β−c

−
1 −α+c−3

f(z) dz =

∫
−c+

1 −c
+
2 +c+

3 −c
−
2 −c

−
1 +c−3

f(z) dz

= −
∫
c1

f(z) dz −
∫
c2

f(z) dz +

∫
c3

f(z) dz

as desired.
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