
Math 3160 § 1.
Treibergs −−σιι

First Midterm Exam Name: Sample
February 16, 2006

Midterm exam given Fri., Jan 30, 1998.

(M.1.) Let z = 2e
πi
3 . Find z2, z̄,

1

z
, arg z, Arg z, <e z and |z|.

(M.2.) Using the fact that w = cot z =
ieiz + ie−iz

eiz − e−iz
, find cot−1 w.

[Hint: Let p = eiz and solve for p in terms of w. Then iz = log p.]

(M.3.) Find all possible (1 + i)
1
6

(M.4.) Suppose that f(z) is an analytic function for all z ∈ C so that <e f(z) +=m f(z) = 1 for
all z. Show that f(z) is constant.

(M.5.) Let g(z) = z̄(z + i) Find all possible z0 ∈ C where the complex limit exists:

lim
z→z0

g(z)− g(z0)

z − z0
.

Solutions of the midterm.

(M.1.) z = 2e
πi
3 so z2 = 4e

2πi
3 = 22(cos 2π

3 + i sin 2π
3 ) = 4(− 1

2 + i
√
3
2 ) = −2 + 2i

√
3. z̄ =

2e−
πi
3 = 2(cos π3 − i sin π

3 ) = 2( 1
2 − i

√
3
2 ) = 1 −

√
3i. 1

z = 1
2e
−πi3 = 1

2 ( 1
2 − i

√
3
2 ) = 1

4 − i
√
3
4 .

arg z = {π3 + 2πk : k ∈ Z}. θ = Arg z = π
3 because −π < θ ≤ π. |z| = 2.

(M.2.) Let p = eiz. Then

w = cot z =
ieiz + ie−iz

eiz − e−iz
=
i
(
p+ 1

p

)
p− 1

p

=
i(p2 + 1)

p2 − 1
.

Thus, solving for p2, w(p2 − 1) = i(p2 + 1) so p2(w− i) = w+ i so p2 =
w + i

w − i
so p =

(
w + i

w − i

) 1
2

.

Finally,

z = cot−1 w = −i log p =
i

2
log

(
w − i
w + i

)
.

(M.3.) z = 1 + i =
√

2e
πi
4 so z

1
6 = 12

√
2
(
e
πi
4

) 1
6

=
{
12
√

2 exp
(
πi
24 + πki

3

)
: k ∈ Z

}
.

(M.4.) f(x+ iy) = u(x, y)+ iv(x, y) is analytic on C so that the Cauchy-Riemann equations hold:
ux = vy and uy = −vx. But we are told that equation also holds u+ v = 1. Differentiating with
respect to x and then to y gives ux + vx = 0 and uy + vy = 0. Plugging in the CR-Equations,
vy + vx = 0 and −vx + vy = 0. Subtracting the last two equations gives 2vx = 0 so using the
differentiated equation, 0 = ux + v − x = ux + 0 implies ux = 0. Hence, the complex derivative
f ′(z) = ux+ ivx = 0 vanishes for all z in the connected domain C. But we showed that a function
that is analytic in a domain and with zero complex derivative has to be constant.

(M.5.) We show that the complex derivative exists and equals f ′(−i) = −i when z0 = −i, but
exists for no other z0. Writing h = z − z0(6= 0), the difference quotient becomes

Q =
f(z0 + h)− f(z0)

h
=

(z0 + h)(z0 + h+ i)− z̄0(z0 + i)

h

=
z̄0(z0 + h+ i) + h̄(z0 + h+ i)− z̄0(z0 + i)

h

=
z̄0h+ h̄(z0 + h+ i)

h
= z0 +

h̄

h
(z0 + i) + h̄.
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If z0+i 6= 0 then ther is no complex limit: The approach h = x+0i→ 0 implies Q→ z0+(z0+i)+0
whereas along the vertical approach h = 0 + yi→ 0 then Q→ z0 − (z0 + i) + 0. The two limits
disagree so there is no limit. However,if z0 + i = 0 then Q = z0 + h̄→ z0 no matter how h→ 0.

Some extra practice problems.

(E.1.) Find the locus of points z ∈ C that satisfy |z + 1| = |z − 2i|.
Rewriting, the equation is |z−(−1)| = |z−(2i)|. Thus the locus is those z that are equidistant

from the points −1 and 2i. This is the bisecting line between those two points, or y = − 1
2x+ 3

4 .
The line is perpendicular to the segment from (-1,0) to (0,2) of slope 2 so the line has slope − 1

2 .
The constant is chosen to make sure that line passes through the midpoint − 1

2 + i.

(E.2.) Show that |2 + z2 + =m z| ≤ 22 if |z| ≤ 4.

Triangle inequality. Assuming |z| ≤ 4 gives

|2 + z2 + =m z| ≤ |2|+ |z2|+ | =m z| ≤ 2 + |z|2 + |z| ≤ 2 + 42 + 4 = 22.

(E.3.) Show for all real θ,

1

2
+ cos θ + cos 2θ + cos 3θ + cos 4θ =

sin 9
2θ

2 sin 1
2θ
.

Using the formula for the geometric series, 1 + z + z2 + z3 + z4 = 1−z5
1−z , with z = eiθ and

taking the real part,

<e
(
1 + eiθ + e2iθ + e3iθ + e4iθ

)
= <e

(
1− e5iθ

1− eiθ

)
= <e

(
(1− e5iθ)(1− e−iθ)
(1− eiθ)(1− e−iθ)

)
1 + cos θ + cos 2θ + cos 3θ + cos 4θ = <e

(
1− e5iθ − e−iθ + e4iθ

2− eiθ − e−iθ

)
=
<e(1− e−iθ − e5iθ + e4iθ)

2− 2 cos θ

=
1− cos θ − cos 5θ + cos 4θ

2− 2 cos θ
=

1

2
+

cos 4θ − cos 5θ

2(1− cos θ)
=

1

2
+

2 sin( 9
2θ) sin( 1

2θ)

4 sin2 θ
2

=
1

2
+

sin( 9
2θ)

2 sin θ
2

where we used the trig identity 1 − cos θ = 1 − cos2 θ2 + sin2 θ
2 = 2 sin2 θ

2 and cos 4θ − cos 5θ =
cos( 9

2θ −
1
2θ)− cos( 9

2θ + 1
2θ) = 2 sin( 9

2θ) sin( 1
2θ). This is the desired result.

(E.4.) For the set S, find the interior points, the boundary points, the accumulation points. Is S
connected? Is S a domain?

S = {z ∈ C : 0 < |z| < 1 } ∪ {z ∈ C : |z| = 1 and <e z ≥ 0 } ∪ {2i}

The set S consists of the unit punctured disk about the origin, with half of the unit circle
included with an isolated point at 2i. The interior points are the punctured disk intS = {z ∈
C : 0 < |z| < 1}. The boundary S. = S = {z ∈ C : |z| = 1} ∪ {0} ∪ {2i}. The accumulation
points S′ = {z ∈ C : |z| ≤ 1}. S is not connected because there is no zig-zag path connecting
the isolated point {2i} to the rest of the set. S is not connected so not a domain. (S isn’t open
either.)

(E.4.) Let f(z) = ez. Find f(S), where S = {z ∈ C : <e z ≤ 0 and =m z > 0 }.
S is the second quadrant. As the exponential function is w = f(z) = ex(cos y+ i sin θ). Since

x + iy ∈ S implies −∞ < x ≤ 0 so 0 < r = ex ≤ 1. On the other hand x + iy ∈ S implies
y > 0 which includes infinitely many 2π-periods. Thus cosx + i sinx takes on all values in the
unit circle. Thus f(S) = {reiθ : 0 < r ≤ 1 and θ ≥ 0 } is the closed unit disk minus the origin.
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(E.5.) What is the domain of f(z) =
1

z2 + 2z + 5
?

The domain is all z ∈ C so that the denominator is nonzero. But the denominator is zero
when z2 + 4z + 5 = 0. Using the quadratic formula

z =
−b±

√
b2 − 4ac

2a
=
−4±

√
42 − 4 · 1 · 5
2 · 1

= −2± i.

Thus the domain is {z ∈ C : z 6= −2± i}.
(E.6.) Assuming everything about finite limits ( L = limz→z0 f(z) when z0 and L are finite), find
and explain L = lim

z→∞

(
z2 + z3

)
.

The limit exists and L =∞. The limit lim
z→∞

f(z) =∞ means (by replacing both z = 1/w and

f(z) by their reciprocals)

0 = lim
w→0

1

f
(
1
w

) .
To check this for the present case, f(z) = z2 + z3 so that

lim
w→0

1

f
(
1
w

) = lim
w→0

1
1
w2 + 1

w3

= lim
w→0

w3

w + 1
=

limw→0 w
3

limw→0 w + limw→0 1
=

03

0 + 1
= 0.

(E.7.) Does f(x+ iy) =
x+ iy

x+ 2iy
have a complex limit as x+ iy → 0? Why?

There is no complex limit. Along the horizontal approach z = x + 0i → 0 then f(x + 0i) =
x

x
= 1 → 1. On the other hand, along the vertical approach z = 0 + iy → 0 then f(0 + iy) =

iy

2iy
=

1

2
→ 1

2
. As both approaches have inconsistent limiting values, there is no complex limit.

(E.8.) Is f(x+ iy) = x+ 2yi an entire function? Why?
The Cauchy Riemann equations fail at all points, so f does not have a complex derivative any-
where. Since u = x and v = 2y we have ux = 1 and vy = 2. Thus the CR equation ux = vy holds
nowhere.

(E.9.) Does f(x+ iy) = (y cosx+ x sinx)e−y + i(y sinx− x cosx)e−y have a complex derivative
at x0 + iy0? Why? If it is defferentiable, what is f ′?

We claim that this f has a complex derivative at all points. We are given u(x, y) = (y cosx+
x sinx)e−y and v(x, y) = (y sinx − x cosx)e−y. The partial derivatives are ux = (−y sinx +
sinx+x cosx)e−y, uy = (cosx− y cosx−x sinx)e−y, vx = (y cosx− cosx+x sinx)e−y and vy =
(sinx−y sinx+x cosx)e−y. First, these are combinations of exponential, sine and cosine functions,
and therefore are continuous at all points. Furthermore, the Cauchy-Riemann Equations hold:
ux = vy and uy = −vx. When the partial derivatives are continuous and the Cauchy-Riemann
equations hold, then the complex derivative exists and it equals f ′(z) = ux + ivx = (−y sinx +
sinx+ x cosx)e−y + i(y cosx− cosx+ x sinx)e−y

(E.10.) Let u(x, y) = x3 − 3xy2. Show that u is harmonic. Find its harmonic conjugate.

uxx = 6x. uyy = −6x. Thus u satisfies uxx + uyy = 0 so is harmonic. To find the harmonic
conjugate we solve the CR equations for v(x, y).

3x2 − 3y2 = ux = vy and 6xy = −uy = vx.

Partially integrating the second equation, v(x, y) = 3x2y + k(y). Differentiating and using the
first equation, 3x2− 3y2 = 3x2 + k′(y) therefore k(y) = −y3 + c. Finally, the harmonic conjugate
is v(x, y) = 3x3x2y − y3 + c.
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(E.11.) Suppose f(reiθ) = u(r, θ) + iv(r, θ) is analytic function on a domain D ⊂ C. Show that
u is harmonic.

Being analytic, the higher partial derivatives all exist and are continuous. Also the Cauchy
Riemann equations in polar coordinates hold rur = vθ and uθ = −rvr. Differentiating the first
with respect to θ and multiplying by r gives rur + r2urr = rvθr. Differentiating the second with
respect to θ gives uθθ = −rvrθ. Equating the equal cross partials, r2urr + rur + uθθ = 0, which
is the equation for a harmonic function in polar coordinates. Similarly differentiating the first
equation with respect to θ yields rurθ = vθθ. Differentiating the second with respect to r and
multiplying by r gives ruθr = −rvr − r2vrr. Equating the cross partials, we get the harmonic
equation for the other function 0 = vθθ + rvr + r2vrr.

(E.12.) Suppose f is analytic function for <e z > 0. Suppose that =m f(x+ i0) = 0 for all x > 0.
If f(1 + i) = π

4 i, what is f(1− i)? Why?

The domain has z → z̄ symmetry. Since the function is real on the x-axis, the reflection
principle holds for the analytic function, or f(z) = f(z̄). But we are given f for z = 1 + i. It
follows from the reflection principle f(1− i) = f(z̄) = f(z) = f(1 + i) = π

4 i = −π4 i.
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