Math 3160 § 1.	First Midterm Exam	Name:	Sample
Treibergs σt		Februar	y 16, 2006

Midterm exam given Fri., Jan 30, 1998.

(M.1.) Let $z = 2e^{\frac{\pi i}{3}}$. Find z^2 , \bar{z} , $\frac{1}{z}$, $\arg z$, $\operatorname{Arg} z$, $\Re e z$ and |z|.

(M.2.) Using the fact that $w = \cot z = \frac{ie^{iz} + ie^{-iz}}{e^{iz} - e^{-iz}}$, find $\cot^{-1} w$.

[Hint: Let $p = e^{iz}$ and solve for p in terms of w. Then $iz = \log p$.]

(M.3.) Find all possible $(1+i)^{\frac{1}{6}}$

(M.4.) Suppose that f(z) is an analytic function for all $z \in \mathbb{C}$ so that $\Re e f(z) + \Im m f(z) = 1$ for all z. Show that f(z) is constant.

(M.5.) Let $g(z) = \overline{z}(z+i)$ Find all possible $z_0 \in \mathbf{C}$ where the complex limit exists:

$$\lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0}.$$

Solutions of the midterm.

(M.1.) $z = 2e^{\frac{\pi i}{3}}$ so $z^2 = 4e^{\frac{2\pi i}{3}} = 2^2(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}) = 4(-\frac{1}{2} + i\frac{\sqrt{3}}{2}) = -2 + 2i\sqrt{3}$. $\bar{z} = -2 + 2i\sqrt{3}$. $2e^{-\frac{\pi i}{3}} = 2(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}) = 2(\frac{1}{2} - i\frac{\sqrt{3}}{2}) = 1 - \sqrt{3}i. \quad \frac{1}{z} = \frac{1}{2}e^{-\frac{\pi i}{3}} = \frac{1}{2}(\frac{1}{2} - i\frac{\sqrt{3}}{2}) = \frac{1}{4} - i\frac{\sqrt{3}}{4}.$
arg $z = \{\frac{\pi}{3} + 2\pi k : k \in \mathbf{Z}\}. \quad \theta = \operatorname{Arg} z = \frac{\pi}{3} \text{ because } -\pi < \theta \le \pi. \ |z| = 2.$ (M.2.) Let $p = e^{iz}$. Then

$$w = \cot z = \frac{ie^{iz} + ie^{-iz}}{e^{iz} - e^{-iz}} = \frac{i\left(p + \frac{1}{p}\right)}{p - \frac{1}{p}} = \frac{i(p^2 + 1)}{p^2 - 1}.$$

Thus, solving for p^2 , $w(p^2 - 1) = i(p^2 + 1)$ so $p^2(w - i) = w + i$ so $p^2 = \frac{w + i}{w - i}$ so $p = \left(\frac{w + i}{w - i}\right)^{\frac{1}{2}}$. Finally,

$$z = \cot^{-1} w = -i \log p = \frac{i}{2} \log \left(\frac{w - i}{w + i} \right).$$

(M.3.) $z = 1 + i = \sqrt{2}e^{\frac{\pi i}{4}}$ so $z^{\frac{1}{6}} = \sqrt[12]{2}\left(e^{\frac{\pi i}{4}}\right)^{\frac{1}{6}} = \left\{\sqrt[12]{2}\exp\left(\frac{\pi i}{24} + \frac{\pi ki}{3}\right) : k \in \mathbf{Z}\right\}.$

(M.4.) f(x+iy) = u(x,y) + iv(x,y) is analytic on **C** so that the Cauchy-Riemann equations hold: $u_x = v_y$ and $u_y = -v_x$. But we are told that equation also holds u + v = 1. Differentiating with respect to x and then to y gives $u_x + v_x = 0$ and $u_y + v_y = 0$. Plugging in the CR-Equations, $v_y + v_x = 0$ and $-v_x + v_y = 0$. Subtracting the last two equations gives $2v_x = 0$ so using the differentiated equation, $0 = u_x + v - x = u_x + 0$ implies $u_x = 0$. Hence, the complex derivative $f'(z) = u_x + iv_x = 0$ vanishes for all z in the connected domain C. But we showed that a function that is analytic in a domain and with zero complex derivative has to be constant.

(M.5.) We show that the complex derivative exists and equals f'(-i) = -i when $z_0 = -i$, but exists for no other z_0 . Writing $h = z - z_0 \neq 0$, the difference quotient becomes

$$Q = \frac{f(z_0 + h) - f(z_0)}{h} = \frac{\overline{(z_0 + h)}(z_0 + h + i) - \overline{z}_0(z_0 + i)}{h}$$
$$= \frac{\overline{z}_0(z_0 + h + i) + \overline{h}(z_0 + h + i) - \overline{z}_0(z_0 + i)}{h}$$
$$= \frac{\overline{z}_0 h + \overline{h}(z_0 + h + i)}{h} = z_0 + \frac{\overline{h}}{h}(z_0 + i) + \overline{h}.$$

If $z_0+i \neq 0$ then ther is no complex limit: The approach $h = x+0i \to 0$ implies $Q \to z_0+(z_0+i)+0$ whereas along the vertical approach $h = 0 + yi \to 0$ then $Q \to z_0 - (z_0 + i) + 0$. The two limits disagree so there is no limit. However, if $z_0 + i = 0$ then $Q = z_0 + \bar{h} \to z_0$ no matter how $h \to 0$.

Some extra practice problems.

(E.1.) Find the locus of points $z \in \mathbf{C}$ that satisfy |z+1| = |z-2i|.

Rewriting, the equation is |z - (-1)| = |z - (2i)|. Thus the locus is those z that are equidistant from the points -1 and 2i. This is the bisecting line between those two points, or $y = -\frac{1}{2}x + \frac{3}{4}$. The line is perpendicular to the segment from (-1,0) to (0,2) of slope 2 so the line has slope $-\frac{1}{2}$. The constant is chosen to make sure that line passes through the midpoint $-\frac{1}{2} + i$.

(E.2.) Show that $|2 + z^2 + \Im m z| \le 22$ if $|z| \le 4$.

Triangle inequality. Assuming $|z| \le 4$ gives

$$|2 + z^{2} + \Im m z| \le |2| + |z^{2}| + |\Im m z| \le 2 + |z|^{2} + |z| \le 2 + 4^{2} + 4 = 22.$$

(E.3.) Show for all real θ ,

$$\frac{1}{2} + \cos\theta + \cos 2\theta + \cos 3\theta + \cos 4\theta = \frac{\sin \frac{9}{2}\theta}{2\sin \frac{1}{2}\theta}$$

Using the formula for the geometric series, $1 + z + z^2 + z^3 + z^4 = \frac{1-z^5}{1-z}$, with $z = e^{i\theta}$ and taking the real part,

$$\begin{aligned} \Re e \left(1 + e^{i\theta} + e^{2i\theta} + e^{3i\theta} + e^{4i\theta} \right) &= \Re e \left(\frac{1 - e^{5i\theta}}{1 - e^{i\theta}} \right) = \Re e \left(\frac{(1 - e^{5i\theta})(1 - e^{-i\theta})}{(1 - e^{i\theta})(1 - e^{-i\theta})} \right) \\ 1 + \cos\theta + \cos 2\theta + \cos 3\theta + \cos 4\theta = \Re e \left(\frac{1 - e^{5i\theta} - e^{-i\theta} + e^{4i\theta}}{2 - e^{i\theta} - e^{-i\theta}} \right) = \frac{\Re e (1 - e^{-i\theta} - e^{5i\theta} + e^{4i\theta})}{2 - 2\cos\theta} \\ &= \frac{1 - \cos\theta - \cos 5\theta + \cos 4\theta}{2 - 2\cos\theta} = \frac{1}{2} + \frac{\cos 4\theta - \cos 5\theta}{2(1 - \cos\theta)} = \frac{1}{2} + \frac{2\sin(\frac{9}{2}\theta)\sin(\frac{1}{2}\theta)}{4\sin^2\frac{\theta}{2}} = \frac{1}{2} + \frac{\sin(\frac{9}{2}\theta)}{2\sin\frac{\theta}{2}} \end{aligned}$$

where we used the trig identity $1 - \cos \theta = 1 - \cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2} = 2 \sin^2 \frac{\theta}{2}$ and $\cos 4\theta - \cos 5\theta = \cos(\frac{9}{2}\theta - \frac{1}{2}\theta) - \cos(\frac{9}{2}\theta + \frac{1}{2}\theta) = 2 \sin(\frac{9}{2}\theta) \sin(\frac{1}{2}\theta)$. This is the desired result. (E.4.) For the set S, find the interior points, the boundary points, the accumulation points. Is S connected? Is S a domain?

$$S = \{z \in \mathbf{C}: \ 0 < |z| < 1 \ \} \cup \{z \in \mathbf{C}: \ |z| = 1 \ and \ \Re e \, z \ge 0 \ \} \cup \{2i\}$$

The set S consists of the unit punctured disk about the origin, with half of the unit circle included with an isolated point at 2*i*. The interior points are the punctured disk int $S = \{z \in \mathbf{C} : 0 < |z| < 1\}$. The boundary $S = S = \{z \in \mathbf{C} : |z| = 1\} \cup \{0\} \cup \{2i\}$. The accumulation points $S' = \{z \in \mathbf{C} : |z| \le 1\}$. S is not connected because there is no zig-zag path connecting the isolated point $\{2i\}$ to the rest of the set. S is not connected so not a domain. (S isn't open either.)

(E.4.) Let $f(z) = e^z$. Find f(S), where $S = \{z \in \mathbb{C} : \Re e z \le 0 \text{ and } \Im m z > 0 \}$.

S is the second quadrant. As the exponential function is $w = f(z) = e^x(\cos y + i\sin \theta)$. Since $x + iy \in S$ implies $-\infty < x \le 0$ so $0 < r = e^x \le 1$. On the other hand $x + iy \in S$ implies y > 0 which includes infinitely many 2π -periods. Thus $\cos x + i\sin x$ takes on all values in the unit circle. Thus $f(S) = \{re^{i\theta} : 0 < r \le 1 \text{ and } \theta \ge 0\}$ is the closed unit disk minus the origin.

(E.5.) What is the domain of $f(z) = \frac{1}{z^2 + 2z + 5}$?

The domain is all $z \in \mathbf{C}$ so that the denominator is nonzero. But the denominator is zero when $z^2 + 4z + 5 = 0$. Using the quadratic formula

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot 5}}{2 \cdot 1} = -2 \pm i.$$

Thus the domain is $\{z \in \mathbf{C} : z \neq -2 \pm i\}.$

(E.6.) Assuming everything about finite limits ($L = \lim_{z \to z_0} f(z)$ when z_0 and L are finite), find and explain $L = \lim_{z \to \infty} (z^2 + z^3)$.

The limit exists and $L = \infty$. The limit $\lim_{z \to \infty} f(z) = \infty$ means (by replacing both z = 1/w and f(z) by their reciprocals)

$$0 = \lim_{w \to 0} \frac{1}{f\left(\frac{1}{w}\right)}.$$

To check this for the present case, $f(z) = z^2 + z^3$ so that

$$\lim_{w \to 0} \frac{1}{f\left(\frac{1}{w}\right)} = \lim_{w \to 0} \frac{1}{\frac{1}{w^2} + \frac{1}{w^3}} = \lim_{w \to 0} \frac{w^3}{w+1} = \frac{\lim_{w \to 0} w^3}{\lim_{w \to 0} w + \lim_{w \to 0} 1} = \frac{0^3}{0+1} = 0$$

(E.7.) Does $f(x+iy) = \frac{x+iy}{x+2iy}$ have a complex limit as $x+iy \to 0$? Why?

There is no complex limit. Along the horizontal approach $z = x + 0i \to 0$ then $f(x + 0i) = \frac{x}{x} = 1 \to 1$. On the other hand, along the vertical approach $z = 0 + iy \to 0$ then $f(0 + iy) = \frac{iy}{2iy} = \frac{1}{2} \to \frac{1}{2}$. As both approaches have inconsistent limiting values, there is no complex limit.

(E.8.) Is f(x+iy) = x + 2yi an entire function? Why?

The Cauchy Riemann equations fail at all points, so f does not have a complex derivative anywhere. Since u = x and v = 2y we have $u_x = 1$ and $v_y = 2$. Thus the CR equation $u_x = v_y$ holds nowhere.

(E.9.) Does $f(x+iy) = (y \cos x + x \sin x)e^{-y} + i(y \sin x - x \cos x)e^{-y}$ have a complex derivative at $x_0 + iy_0$? Why? If it is defined by the state of the stat

We claim that this f has a complex derivative at all points. We are given $u(x, y) = (y \cos x + x \sin x)e^{-y}$ and $v(x, y) = (y \sin x - x \cos x)e^{-y}$. The partial derivatives are $u_x = (-y \sin x + \sin x)e^{-y}$, $u_y = (\cos x - y \cos x - x \sin x)e^{-y}$, $v_x = (y \cos x - \cos x + x \sin x)e^{-y}$ and $v_y = (\sin x - y \sin x + x \cos x)e^{-y}$. First, these are combinations of exponential, sine and cosine functions, and therefore are continuous at all points. Furthermore, the Cauchy-Riemann Equations hold: $u_x = v_y$ and $u_y = -v_x$. When the partial derivatives are continuous and the Cauchy-Riemann equations hold, then the complex derivative exists and it equals $f'(z) = u_x + iv_x = (-y \sin x + \sin x)e^{-y}$

(E.10.) Let $u(x, y) = x^3 - 3xy^2$. Show that u is harmonic. Find its harmonic conjugate.

 $u_{xx} = 6x$. $u_{yy} = -6x$. Thus u satisfies $u_{xx} + u_{yy} = 0$ so is harmonic. To find the harmonic conjugate we solve the CR equations for v(x, y).

$$3x^2 - 3y^2 = u_x = v_y$$
 and $6xy = -u_y = v_x$.

Partially integrating the second equation, $v(x, y) = 3x^2y + k(y)$. Differentiating and using the first equation, $3x^2 - 3y^2 = 3x^2 + k'(y)$ therefore $k(y) = -y^3 + c$. Finally, the harmonic conjugate is $v(x, y) = 3x^3x^2y - y^3 + c$.

(E.11.) Suppose $f(re^{i\theta}) = u(r,\theta) + iv(r,\theta)$ is analytic function on a domain $D \subset \mathbf{C}$. Show that u is harmonic.

Being analytic, the higher partial derivatives all exist and are continuous. Also the Cauchy Riemann equations in polar coordinates hold $ru_r = v_{\theta}$ and $u_{\theta} = -rv_r$. Differentiating the first with respect to θ and multiplying by r gives $ru_r + r^2u_{rr} = rv_{\theta r}$. Differentiating the second with respect to θ gives $u_{\theta\theta} = -rv_{r\theta}$. Equating the equal cross partials, $r^2u_{rr} + ru_r + u_{\theta\theta} = 0$, which is the equation for a harmonic function in polar coordinates. Similarly differentiating the first equation with respect to θ yields $ru_{r\theta} = v_{\theta\theta}$. Differentiating the second with respect to r and multiplying by r gives $ru_{\theta r} = -rv_r - r^2v_{rr}$. Equating the cross partials, we get the harmonic equation for the other function $0 = v_{\theta\theta} + rv_r + r^2v_{rr}$.

(E.12.) Suppose f is analytic function for $\Re e z > 0$. Suppose that $\Im m f(x+i0) = 0$ for all x > 0. If $f(1+i) = \frac{\pi}{4}i$, what is f(1-i)? Why?

The domain has $z \to \overline{z}$ symmetry. Since the function is real on the *x*-axis, the reflection principle holds for the analytic function, or $\overline{f(z)} = f(\overline{z})$. But we are given f for z = 1 + i. It follows from the reflection principle $f(1-i) = f(\overline{z}) = \overline{f(z)} = \overline{f(1+i)} = \frac{\overline{\pi}}{4}i = -\frac{\pi}{4}i$.