Math 3070 § 1.	Nile Flow: PP Plot to Check Normality	Name: Example
Treibergs	PP Plot of Simulated Non-normal Data	October 9, 2012

This demonstration illustrates using the PP-plot to check normality of data. We use the canned dataset "Nile" in \mathbf{R} of measurements of the annual flow of the river Nile at Ashwan 1871–1970.

We will illustrate the construction of the PP-plot "by hand" and using the instructions available in \mathbf{R} . We shall use the random number generators to illustrate how non-normal PP-Plots look.

R Session:

R version 2.10.1 (2009-12-14) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. [R.app GUI 1.31 (5538) powerpc-apple-darwin8.11.1] [Workspace restored from /Users/andrejstreibergs/.RData] > ########### TO CHECK NORMALITY WE COMPARE OBSERVED QUANTILES WITH THEORETICAL > # > # The canned data set of annual flow of the Nile River. > N<-Nile;N Time Series: Start = 1871End = 1970Frequency = 1[1] 1120 1160 963 1210 1160 [6] 1160 813 1230 1370 1140 [11] 995 935 1110 994 1020 [16] 960 1180 799 958 1140 [21] 1100 1210 1150 1250 1260 [26] 1220 1030 1100 774 840

[31] 874 694 940 833 [36] 916 692 1020 1050 969 726 456 824 [41] 831 702 [46] 1120 1100 832 764 821 [51] 768 845 864 862 698 [56] 845 744 796 1040 759 [61] 781 865 845 944 984 [66] 897 822 1010 771 676 [71] 649 846 812 742 801 [76] 1040 860 874 848 890 [81] 744 749 838 1050 918 [86] 986 797 923 975 815 [91] 1020 906 901 1170 912 [96] 746 919 718 714 740 > # To see more information about the data: > help(Nile) > # The number of entries in the data: > n <- length(Nile); n</pre> [1] 100 > # Sort the readings > N <- sort(N)> xbar<-mean(N); s<-sd(N); xbar; s</pre> [1] 919.35 [1] 169.2275 > # Standardize: subtract xbar from each entry and divide by s > sN <-(N-xbar)/s; sN</pre> [1] -2.738030156 [2] -1.597553583 [3] -1.438005047 [4] -1.343457766 [5] -1.331639356 [6] -1.308002536 [7] -1.290274921 [8] -1.284365716 [9] -1.213455255 [10] -1.189818435 [11] -1.142544795 [12] -1.059815924 [13] -1.047997514 [14] -1.036179104 [15] -1.036179104 [16] -1.024360694 [17] -1.006633079 [18] -0.947541029 [19] -0.917995003 [20] -0.894358183 [21] -0.876630568 [22] -0.858902953 [23] -0.817538518 [24] -0.728900442 [25] -0.722991237

701

[26] -0.711172827

[27]	-0.699354417
[28]	-0.634353161
[29]	-0.628443956
[30]	-0.616625546
[31]	-0.581170316
[32]	-0.575261111
[33]	-0.563442701
[34]	-0.522078265
[35]	-0.516169060
[36]	-0.510259855
[37]	-0.480713830
[38]	-0.468895420
[39]	-0.439349395
[40]	-0.439349395
[41]	-0.439349395
[42]	-0.433440190
[43]	-0.421621780
	-0.350711319
[44]	
[45]	-0.338892909
[46]	-0.327074499
[47]	-0.321165294
[48]	-0.267982449
[49]	-0.267982449
[50]	-0.173435168
[51]	-0.132070733
[52]	-0.108433913
[53]	-0.078887887
[54]	-0.043432657
[55]	-0.019795837
[56]	-0.007977427
[57]	-0.002068222
[58]	0.021568598
[59]	0.092479059
[60]	0.122025084
[61]	0.145661904
[62]	0.228390775
[63]	0.240209185
[64] [65]	0.257936800
	0.293392030
[66]	0.328847261
[67]	0.382030106
[68]	0.393848516
[69]	0.441122156
[70]	0.447031361
[71]	0.535669437
[72]	0.594761487
[73]	0.594761487
[74]	0.594761487
[75]	0.653853538
[76]	0.712945588
[77]	0.712945588
[78]	0.772037639

[79]	0.772037639	
[80]		
[81]		
[82]		
[83]		
[84]		
[85]		
[86]		
[87]		
[88]		
[89]		
[90]		
[91]		
[92]		
[93]		
[94]		
[95]		
[96]		
	1.835694546	
	1.953878647	
	2.012970698	
[100]	2.662983252	
		######################################
		ual subintervals of [0,1]
	-ppoints(n); pp	0.025
	0.005 0.015 0.025	
[5]	0.045 0.055 0.065	0.075
[5] [9]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.075 0.115
[5] [9] [13]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145	0.075 0.115 0.155
[5] [9] [13] [17]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185	0.075 0.115 0.155 0.195
[5] [9] [13] [17] [21]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225	0.075 0.115 0.155 0.195 0.235
[5] [9] [13] [17] [21] [25]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.255 0.265	0.075 0.115 0.155 0.195 0.235 0.275
[5] [9] [13] [17] [21] [25] [29]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.255 0.265 0.285 0.295 0.305	0.075 0.115 0.155 0.195 0.235 0.275 0.315
[5] [9] [13] [17] [21] [25] [29] [33]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.255 0.265 0.285 0.295 0.305 0.325 0.335 0.345	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355
[5] [9] [13] [17] [21] [25] [29] [33] [37]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.255 0.265 0.285 0.295 0.305 0.325 0.335 0.345 0.365 0.375 0.385	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395
[5] [9] [13] [17] [21] [25] [29] [33] [37] [41]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.255 0.265 0.285 0.295 0.305 0.325 0.335 0.345 0.365 0.375 0.385 0.405 0.415 0.425	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435
[5] [9] [13] [21] [25] [29] [33] [37] [41] [45]	$\begin{array}{ccccc} 0.045 & 0.055 & 0.065 \\ 0.085 & 0.095 & 0.105 \\ 0.125 & 0.135 & 0.145 \\ 0.165 & 0.175 & 0.185 \\ 0.205 & 0.215 & 0.225 \\ 0.245 & 0.255 & 0.265 \\ 0.285 & 0.295 & 0.305 \\ 0.325 & 0.335 & 0.345 \\ 0.365 & 0.375 & 0.385 \\ 0.405 & 0.415 & 0.425 \\ 0.445 & 0.455 & 0.465 \end{array}$	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435 0.475
[5] [9] [13] [21] [25] [29] [33] [37] [41] [45] [49]	$\begin{array}{ccccc} 0.045 & 0.055 & 0.065 \\ 0.085 & 0.095 & 0.105 \\ 0.125 & 0.135 & 0.145 \\ 0.165 & 0.175 & 0.185 \\ 0.205 & 0.215 & 0.225 \\ 0.245 & 0.255 & 0.265 \\ 0.285 & 0.295 & 0.305 \\ 0.325 & 0.335 & 0.345 \\ 0.365 & 0.375 & 0.385 \\ 0.405 & 0.415 & 0.425 \\ 0.445 & 0.455 & 0.465 \\ 0.485 & 0.495 & 0.505 \end{array}$	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435 0.475 0.515
[5] [9] [13] [21] [25] [29] [33] [37] [41] [45] [49] [53]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.295 0.265 0.325 0.335 0.345 0.365 0.375 0.385 0.405 0.415 0.425 0.445 0.455 0.465 0.485 0.495 0.505	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435 0.435 0.475 0.515 0.555
[5] [9] [13] [17] [25] [29] [33] [37] [41] [45] [49] [53] [57]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.255 0.265 0.285 0.295 0.305 0.325 0.335 0.345 0.365 0.375 0.385 0.405 0.415 0.425 0.445 0.455 0.465 0.485 0.495 0.505 0.525 0.535 0.545	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435 0.435 0.475 0.515 0.555 0.595
[5] [9] [13] [17] [25] [29] [33] [37] [41] [45] [49] [53] [57] [61]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.255 0.265 0.285 0.295 0.305 0.325 0.335 0.345 0.365 0.375 0.385 0.405 0.415 0.425 0.445 0.455 0.465 0.485 0.495 0.505 0.525 0.535 0.545 0.565 0.575 0.585 0.605 0.615 0.625	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435 0.435 0.475 0.515 0.555 0.595 0.635
[5] [9] [13] [21] [25] [29] [33] [37] [41] [45] [49] [53] [57] [61] [65]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.255 0.265 0.285 0.295 0.305 0.325 0.335 0.345 0.365 0.375 0.385 0.405 0.415 0.425 0.445 0.455 0.465 0.525 0.535 0.545 0.565 0.575 0.585 0.605 0.615 0.625	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435 0.435 0.475 0.515 0.555 0.595 0.635 0.675
[5] [9] [13] [21] [25] [29] [33] [37] [41] [45] [49] [53] [57] [61] [65] [69]	0.045 0.055 $0.0650.085$ 0.095 $0.1050.125$ 0.135 $0.1450.165$ 0.175 $0.1850.205$ 0.215 $0.2250.245$ 0.255 $0.2650.325$ 0.335 $0.3450.365$ 0.375 $0.3850.405$ 0.415 $0.4250.445$ 0.455 $0.4650.485$ 0.495 $0.5050.525$ 0.535 $0.5450.565$ 0.575 $0.5850.605$ 0.615 $0.6250.685$ 0.695 0.705	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435 0.435 0.475 0.515 0.555 0.555 0.595 0.635 0.675 0.715
[5] [9] [13] [21] [25] [29] [33] [37] [41] [45] [49] [53] [57] [61] [65] [69] [73]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.255 0.265 0.285 0.295 0.305 0.325 0.335 0.345 0.365 0.375 0.385 0.405 0.415 0.425 0.445 0.455 0.465 0.485 0.495 0.505 0.525 0.535 0.545 0.565 0.575 0.585 0.605 0.615 0.625 0.645 0.655 0.665 0.685 0.695 0.705 0.725 0.735 0.745	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435 0.435 0.515 0.515 0.555 0.595 0.635 0.635 0.715 0.755
[5] [9] [13] [21] [25] [29] [33] [37] [41] [45] [49] [53] [57] [61] [65] [69] [73] [77]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.255 0.265 0.285 0.295 0.305 0.325 0.335 0.345 0.365 0.375 0.385 0.405 0.415 0.425 0.445 0.455 0.465 0.485 0.495 0.505 0.525 0.535 0.545 0.565 0.575 0.585 0.605 0.615 0.625 0.645 0.655 0.665 0.685 0.695 0.705 0.725 0.735 0.745 0.765 0.775 0.785	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435 0.475 0.515 0.555 0.555 0.595 0.635 0.635 0.715 0.755 0.795
[5] [9] [13] [17] [25] [29] [33] [37] [41] [45] [49] [53] [57] [61] [65] [69] [73] [77] [81]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.255 0.265 0.285 0.295 0.305 0.325 0.335 0.345 0.365 0.375 0.385 0.405 0.415 0.425 0.445 0.455 0.465 0.485 0.495 0.505 0.525 0.535 0.545 0.565 0.575 0.585 0.605 0.615 0.625 0.645 0.655 0.665 0.685 0.695 0.705 0.725 0.735 0.745 0.765 0.775 0.785 0.805 0.815 0.825	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435 0.435 0.475 0.515 0.555 0.595 0.635 0.635 0.675 0.715 0.795 0.835
[5] [9] [13] [17] [21] [25] [29] [33] [37] [41] [45] [49] [53] [57] [61] [65] [69] [73] [77] [81] [85]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.295 0.305 0.325 0.335 0.345 0.365 0.375 0.385 0.405 0.415 0.425 0.445 0.455 0.465 0.485 0.495 0.505 0.525 0.535 0.545 0.565 0.575 0.585 0.605 0.615 0.625 0.645 0.655 0.665 0.685 0.695 0.705 0.725 0.735 0.745 0.765 0.775 0.785 0.805 0.815 0.825 0.845 0.855 0.865	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435 0.435 0.475 0.515 0.555 0.595 0.635 0.635 0.715 0.715 0.755 0.795 0.835 0.835 0.875
[5] [9] [13] [17] [21] [25] [29] [33] [37] [41] [45] [49] [53] [57] [61] [65] [69] [73] [77] [81] [85] [89]	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.255 0.265 0.285 0.295 0.305 0.325 0.335 0.345 0.365 0.375 0.385 0.405 0.415 0.425 0.445 0.455 0.465 0.525 0.535 0.545 0.565 0.575 0.585 0.605 0.615 0.625 0.645 0.655 0.665 0.685 0.695 0.705 0.725 0.735 0.745 0.765 0.775 0.785 0.805 0.815 0.825 0.845 0.895 0.905	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435 0.435 0.475 0.515 0.555 0.555 0.595 0.635 0.635 0.715 0.715 0.715 0.795 0.835 0.875 0.875 0.915
 [5] [9] [13] [17] [21] [25] [29] [33] [37] [41] [45] [49] [53] [57] [61] [65] [69] [73] [77] [81] [85] [89] [93] 	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.255 0.265 0.325 0.335 0.345 0.365 0.375 0.385 0.405 0.415 0.425 0.445 0.455 0.465 0.485 0.495 0.505 0.525 0.535 0.545 0.565 0.575 0.585 0.605 0.615 0.625 0.645 0.655 0.665 0.645 0.655 0.705 0.725 0.735 0.745 0.765 0.775 0.785 0.805 0.815 0.825 0.845 0.855 0.865 0.885 0.895 0.905 0.925 0.935 0.945	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435 0.435 0.475 0.515 0.555 0.595 0.635 0.635 0.675 0.715 0.715 0.755 0.795 0.835 0.835 0.875 0.915 0.955
 [5] [9] [13] [17] [21] [25] [29] [33] [37] [41] [45] [49] [53] [57] [61] [65] [69] [73] [77] [81] [85] [89] [93] 	0.045 0.055 0.065 0.085 0.095 0.105 0.125 0.135 0.145 0.165 0.175 0.185 0.205 0.215 0.225 0.245 0.255 0.265 0.285 0.295 0.305 0.325 0.335 0.345 0.365 0.375 0.385 0.405 0.415 0.425 0.445 0.455 0.465 0.525 0.535 0.545 0.565 0.575 0.585 0.605 0.615 0.625 0.645 0.655 0.665 0.685 0.695 0.705 0.725 0.735 0.745 0.765 0.775 0.785 0.805 0.815 0.825 0.845 0.895 0.905	0.075 0.115 0.155 0.195 0.235 0.275 0.315 0.355 0.395 0.435 0.435 0.475 0.515 0.555 0.595 0.635 0.635 0.675 0.715 0.715 0.755 0.795 0.835 0.835 0.875 0.915 0.955

> qq <- qnorm(pp); qq</pre> [1] -2.57582930 -2.17009038 [3] -1.95996398 -1.81191067 [5] -1.69539771 -1.59819314 [7] -1.51410189 -1.43953147 [9] -1.37220381 -1.31057911 [11] -1.25356544 -1.20035886 [13] -1.15034938 -1.10306256 [15] -1.05812162 -1.01522203 [17] -0.97411388 -0.93458929 [19] -0.89647336 -0.85961736 [21] -0.82389363 -0.78919165 [23] -0.75541503 -0.72247905 [25] -0.69030882 -0.65883769 [27] -0.62800601 -0.59776013 [29] -0.56805150 -0.53883603 [31] -0.51007346 -0.48172685 [33] -0.45376219 -0.42614801 [35] -0.39885507 -0.37185609 [37] -0.34512553 -0.31863936 [39] -0.29237490 -0.26631061 [41] -0.24042603 -0.21470157 [43] -0.18911843 -0.16365849 [45] -0.13830421 -0.11303854 [47] -0.08784484 -0.06270678 [49] -0.03760829 -0.01253347 [51] 0.01253347 0.03760829 [53] 0.06270678 0.08784484 [55] 0.11303854 0.13830421 [57] 0.16365849 0.18911843 [59] 0.21470157 0.24042603 [61] 0.26631061 0.29237490 [63] 0.31863936 0.34512553 [65] 0.37185609 0.39885507 [67] 0.42614801 0.45376219 [69] 0.48172685 0.51007346 [71] 0.53883603 0.56805150 [73] 0.59776013 0.62800601 [75] 0.65883769 0.69030882 [77] 0.72247905 0.75541503 [79] 0.78919165 0.82389363 [81] 0.85961736 0.89647336 [83] 0.93458929 0.97411388 [85] 1.01522203 1.05812162 [87] 1.10306256 1.15034938 [89] 1.20035886 1.25356544 [91] 1.31057911 1.37220381 [93] 1.43953147 1.51410189 [95] 1.59819314 1.69539771 [97] 1.81191067 1.95996398 [99] 2.17009038 2.57582930

> # The normal quantiles: pp[i] = P(Z qq[i]) where Z ~ N(0,1)

```
>
> # Set layout to make four plots per page.
> layout(matrix(c(1,3,2,4),ncol=2))
> # Plot Standardized Observed Quantiles vs. Theoretical Normal Quantiles
> qqplot(qq,sN,xlab="Theoretical Percentiles",ylab="Observed Standardized Nile",main="PP Plot of Nile
> # Add the line $y=x$ for visual appeal.
> abline(0,1,col=2)
> # Same. This time "qqnorm" automatically generates standard normal quantiles
> qqnorm(sN,ylab="Observed Standardized Nile",main="PP Plot of Nile 2")
> abline(0,1,col=3)
>
> # This time plot non-standard observed quantiles vs. standard normal quantiles
> # Because it is a linear change of observed data, the graph has same shape.
> # "lm" computes the intercept and slope of the best fit line through the points.
> qqnorm(N,ylab="Observed Standardized Nile",main="PP Plot of Nile 3")
> abline(lm(N ~ qq),col=4)
>
> # Same. This time "qqline" plots the line through the quartile points.
> qqnorm(N,ylab="Observed Standardized Nile",main="PP Plot of Nile")
> qqline(N,col=5)
> #
> #
> # Notes on the four graphs:
> #
> # 1.) Except for the scales on the left, ALL FOUR HAVE THE SAME SHAPE.
> #
        This is because all use the same x-coordinates and the y-coordinates
        for the lower graphs are linearly transformed versions of the upper.
> #
> #
        The diagonals have been computed differently: x=y in the first two,
> #
        best fit line in the third and through the quartiles in the fourth.
> #
> # 2.) The data lines up pretty well with the diagonal. 100 observations is
> #
        a fairly small sample and one would expect a little wobble. There
        is a slight "S" shape to the data, showing that the data may have
> #
> #
        come from a distribution that is slightly "light tailed."
```



```
>
> #
> # Since there is some variability, we don't expect the qqplots to line up exactly.
> # To see this, we generate four different samples of 100 random N(0,1) pts and qqplot.
> x<-rnorm(100);qqnorm(x,ylab="Random N(0,1)",main="Sample 1"); qqline(x,col=3)</pre>
> x<-rnorm(100);qqnorm(x,ylab="Random N(0,1)",main="Sample 2"); qqline(x,col=4)</pre>
> x<-rnorm(100);qqnorm(x,ylab="Random N(0,1)",main="Sample 3"); qqline(x,col=5)</pre>
> x<-rnorm(100);qqnorm(x,ylab="Random N(0,1)",main="Sample 4"); qqline(x,col=6)</pre>
> #
> #
> #
> # Notes on the four graphs:
> #
> # 1.) In this case, we have taken a different random sample for each graph.
        Each sample is 100 random numbers, coming from the same N(0,1)
> #
> #
        distribution. The variability is inherent in sampling: just by chance
> #
        you get different observations so that the samples have different
> #
        means and variances, as well as different QQ-plots.
> #
> # 2.) Each sample lines up pretty well with the diagonal. 100 observations is
> #
        a fairly small sample and one would expect a little wobble. One might
> #
        see a slight "r" shape in Sample 1, is a slight "N" shape to Sample 3,
> #
        and a slight "S" shape to Sample 4. One may be mislead by the quartile
> #
        lines that tend to exaggerate the tail departure from linear. But
> #
        the point is that one should not rule out normality from small trends
        since they may be due to random variation in the sample and not
> #
> #
        due to non-normality of the data.
```


Theoretical Quantiles

Theoretical Quantiles

```
> # Skewed right
> # Take standard lognormal variables. pdf is zero for negative X
> # but is greater than normal for X positive
> # "light left tail & heavy right tail."
> # The QQ-plot is "J" shaped.
> x<-rlnorm(100)
> qqnorm(x,ylab="Random Log Normal(0,1)",main="Skewed Right");qqline(x,col=2)
> #skewed left
> # Take X ~ -Exp(1). pdf is zero for positive X but is greater than normal
> # for X negative "heavy left tail & light right tail."
> # The QQ-plot is "r" shaped.
> x<--rexp(100)
> qqnorm(x,ylab="Random -Exp(1)",main="Skewed Left");qqline(x,col=3)
>
>
> # light-tailed
> # Take X ~ Beta(.5,2). pdf is zero for |X-.5|>.5." light tailed."
> # The QQ-plot is "S" shaped.
> x<-rbeta(100,.5,2)
> qqnorm(x,ylab="Random Beta(.5,2)",main="Light Tailed");qqline(x,col=4)
>
> # heavy tailed
> x<-rt(100,df=3)
> # Take X ~ t(3). pdf is greater than normal in tails "heavy tailed."
> # The QQ-plot is "N" shaped.
> qqnorm(x,ylab="Random t(3)",main="Heavy Tailed");qqline(x,col=7)
> #
> # Notes on the four graphs:
> #
> # 1.) This time, the departure from linearity is far more severe. Indeed,
        the samples were chosen from non-normal distributions.
> #
> #
> # 2.) The properties of the distributions reflect in the normal PP-plots.
> #
        a.) Sample 1 is X ~ lognormal(0,1). There are no negative X but
> #
             the pdf is greater than normal for X very positive so
> #
> #
             "light left tail & heavy right tail." The qq-plot is "J" shaped:
> #
> #
        b.) Sample 2 is X \tilde{} -Exp(1) (exponential for negative X and no
             positive X.) The QQ-plot is "r" shaped. The pdf is zero for
> #
             positive X but is greater than normal for X negative.
> #
> #
             "heavy left tail & light right tail." The QQ-plot is "r" shaped.
> #
> #
        c.) Sample 3 is X ~ Beta(.5,2). pdf is zero for |X-.5|>.5.
> #
             " light tailed." The QQ-plot is "S" shaped.
> #
> #
        d. Sample 4 is X ~ t(3). pdf is greater than normal in tails
> #
            "heavy tailed." The QQ-plot is "N" shaped.
```

