This is an closed book test except that you are allowed three "cheat sheets," $8.5 " \mathrm{x} 11$ " pieces of paper with notes on both sides, one for the final plus the two cheat sheets from the midterms. No other notes, books, papers, calculators, tablets, phones or messaging devices are permitted. Define terms, give complete solutions and explain your logic. There are [100] total points. Do SEVEN of nine problems. If you do more than seven problems, only the first seven will be graded. Cross out the problems you don't wish to be graded.

1. [18] Multiple choice. The choices are given in the columns "Date / Place" and "Contribution." For each mathematician in the table at the bottom, fill in the number of your choice for the

1.	$/ 18$
2.	$/ 15$
3.	$/ 14$
4.	$/ 14$
5.	$/ 14$
6.	$/ 14$
7.	$/ 14$
8.	$/ 14$
9.	$/ 14$
Total	$/ 100$

Date/Place

1. 1616-1703, Oxford
2. 1638-1675, St.Andrews
3. 1642-1727, Cambridge
4. 1646-1716 Hanover
5. 1667-1745, Basel
6. 1700-1782, Basel
7. 1707-1783, Basel
8. 1717-1783, Paris
9. 1777-1855, Göttingen

Contribution

A. Classified cubics. Inverse square law for gravitation and proved Kepler's laws. Geometric calculus: fluxions, binomial series, roots. B. Cryptanalyst. Algebraic methods for integration. Found infinite series and products. Used the symbol " ∞."
C. First published proof of the Fundamental Theorem of Calculus. Unified circular and hyperbolic functions. Series and interploation. D. Formulated most of undergraduate calculus and differential equations including a proof of the fundamental theorem, the notation $\int f(x) d x$, the characteristic triangle $(d x, d y, d s)$ and transmutation. E. Pioneer of partial differential equations, hydrodynamics. Found the generating function for Fibonacci sequence.
F. Solved the catenary equation. Formulated and solved the brachistochrone problem. Introduced partial differentiation and found the integral of x^{x}.
G. Solved the wave equation. Wrote a treatise on dynamics. Formulated equations of planar irrotational and incompressible fluid flow. Tried to prove the fundamental theorem of algebra. H. Summed the reciprocal squares series and studied the complex exponential and zeta functions. Studied analysis, geometry, graph theory and wrote a successful text in algebra.
I. Worked in number theory, non-Euclidean geometry, conformal mapping, complex functions and curved surfaces. Calculated the orbit of Ceres, developed the telegraph and studied magnetism.

Mathematician	Date / Place	Contribution
Daniel Bernoulli		
Johann Bernoulli		
Jean Baptiste le Rond d'Alembert		
Leonhard Euler		
Karl Friedrich Gauss		
James Gregory		
Gottfried Wilhelm Leibnitz		
Isaac Newton		
John Wallis		

Math 3010 § 1.
Treibergs

Final Exam
Name:
December 13, 2022
2. [15] Short Answer. Here a list of countries where mathematics developed. For each country, identify an important mathematician of that region, state an important discovery by this mathematician, and state a feature of the mathematics of that country that distinguishes it from other rcountries. [Seven or fewer words!]

Country	Mathematician	Their Discovery	Distinguishing Feature
Greece			
China			
India			
Italy			

\qquad
Treibergs
3. Determine whether the following statements are true or false.
(a) [2] A right triangle in the plane whose legs have length a and b and hypotenuse has length c satisfies $a^{2}+b^{2}=c^{2}$.
TRUE: \bigcirc FALSE: \bigcirc
(b) [2] The cubic equation $y^{3}+3 y^{2}=10$ may be solved by radicals.

(c) [2] D'Alembert's solution of $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$ is $u(t, x)=f(x+t)+g(x-t)$ where f and g are functions.

$$
\text { TRUE: } \bigcirc \text { FALSE: } \bigcirc
$$

(d) [2] Archimedes knew the area of the region bounded by the parabola $y=x^{2}$ and the line $y=1$.
TRUE: \bigcirc FALSE: \bigcirc
[6] Give a detailed explanantion of ONE of your answers (a)-(d) above.

Math 3010 § 1.
Treibergs

Final Exam
Name:
December 13, 2022
4. (a) [7] A sequence is defined from a starting number $a_{0}=1$, and then by the recursion

$$
a_{k}=3-a_{k-1}, \quad \text { for } k \geq 1
$$

where b and c are constants. Find a closed form for the generating function $f(x)$ for the sequence $a_{0}, a_{1}, a_{2}, \ldots$. Sum the generating function to compute the a_{k} 's.
(b) [7] Following Newton, find the first four nonvanishing terms of the power series for $f(x)=\frac{1}{\sqrt{1+x^{2}}}$.

Math 3010 § 1.
Treibergs

Final Exam
Name:
December 13, 2022
5. Let T be a triangle with vertices $(0,0),(b, 0)$ and $(0, h)$, with base b and height h. Then the area $A=\frac{1}{2} b h$.
(a) [4] Prove the area $A=\frac{1}{2} b h$ using Euclid's Dissection Method.

(b) [5] Prove the area $A=\frac{1}{2} b h$ using Eudoxus' Method of Exhaustion.
(c) [5] Prove the area $A=\frac{1}{2} b h$ using Cavalieri's' Principle.

Math 3010 § 1.
Treibergs

Final Exam
Name:
December 13, 2022
6. (a) [7] Using Fermat's method of ad-equality, find the slope of the tangent line at $x>0$ of the curve

$$
y=\frac{x}{1+x}
$$

(b) [7] Use Newton's method of fluxions or Leibnitz's calculus of differentials to find the slope of the same curve

$$
y=\frac{x}{1+x}
$$

Math 3010 § 1.
Treibergs

Final Exam
Name:
December 13, 2022
7. (a) [7] Use Euler's method to find $S=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots$.

Hint: $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\left(1-\frac{4 x^{2}}{\pi^{2}}\right)\left(1-\frac{4 x^{2}}{3^{2} \pi^{2}}\right)\left(1-\frac{4 x^{2}}{5^{2} \pi^{2}}\right) \cdots$
(b) [7] Compute the Euler Characteristic of the dodecahedron.

Dodecahedron

Math 3010 § 1.
Treibergs

Final Exam
Name:
December 13, 2022
8. [14] Using Newton's version of Newton's method, starting from $x_{0}=1$, do at least three iterations of the algorithm to approximate the positive zero of $x^{2}-2$.

$x_{0}=2$
$x_{1}=$
$x_{2}=$
$x_{3}=$

Math 3010 § 1.
Treibergs

Final Exam
Name:
December 13, 2022
(a) [14] Find all integers x that simultaneously satisfy the congruences.

$$
\begin{array}{lr}
x \equiv 2 & \bmod 3 \\
x \equiv 3 & \bmod 4 \\
x \equiv 4 & \bmod 7
\end{array}
$$

