
Math 3010 § 1.
Treibergs

First Midterm Exam Name: Solutions
February 7, 2018

1. For each location, fill in the corresponding map letter. For each mathematician, fill in their
principal location by number, and dates and mathematical contribution by letter.

Mathematician Location Dates Contribution

Archimedes 5 e β

Euclid 1 d δ

Plato 2 c ζ

Pythagoras 3 b γ

Thales 4 a α

Locations Dates Contributions

1. Alexandria E a. 624–547 bc α. Advocated the deductive method. First man
to have a theorem attributed to him.

2. Athens C b. 580–497 bc β. Discovered theorems using mechanical intuition
for which he later provided rigorous proofs.

3. Croton A c. 427–346 bc γ. Explained musical harmony in terms of whole number
ratios. Found that some lengths are irrational.

4. Miletus D d. 330–270 bc δ. His books set the standard for mathematical
rigor until the 19th century.

5. Syracuse B e. 287–212 bc ζ. Theorems require sound definitions and proofs. The line
and the circle are the purest elements of geometry.

1



2. Use the Euclidean algorithm to find the greatest common divisor of 168 and 198. Find two
integers x and y so that gcd(198, 168) = 198x+ 168y. Give another example of a
Diophantine equation. What property does it have to be called Diophantine? (Saying that
it was invented by Diophantus gets zero points!)

198 = 1 · 168 + 30

168 = 5 · 30 + 18

30 = 1 · 18 + 12

18 = 1 · 12 + 6

12 = 3 · 6 + 0

So gcd(198, 168) = 6.

6 = 18− 12

= 18− (30− 18) = 2 · 18− 30

= 2 · (168− 5 · 30)− 30 = 2 · 168− 11 · 30

= 2 · 168− 11 · (198− 168) = 13 · 168− 11 · 198

Thus x = −11 and y = 13 .

The problem of finding Pythagorean triples is a Diophantine equation

x2 + y2 = z2

An equation is called Diophantine when there are fewer equations than variables, but the
solutions are restricted to be integers (or rational numbers). Another example is Pell’s
equation y2 − 2x2 = 1.

3. Determine whether the following statements are true or false. Give a detailed explainantion
of ONE of your answers (a)–(d).

(a) There are five distinct regular polyhedra.

True. There are five regular polyhedra: tetrahedron, cube. octohedron, dodecahedron
and icosohedron.

One considers the possible shapes of the faces (triangle, square, pentagon and so on)
and then computes the possible number m of faces that meet at a vertex. This number
has to be at least three for the polyherdon not to be two faces glued together. But
it must satisfy mαn < 360◦ where αn is the interior angle of a regular n-gon for the
polyhedron to be convex. The only possibilities for triangular faces when α3 = 60◦ are
m = 3, 4, 5. For square faces when α4 = 90◦ the only possibilities are m = 3 and for
pentagonal faces when α5 = 108◦ is m = 3. n ≥ 6 is not possible since 3αn ≥ 360◦.
That makes five possible figures (n,m) = (3, 3), (3, 4), (3, 5), (4, 3), (5, 3). Finally, all of
these polyhedra exist because they can be constructed, for example by computing the
coordinates of their vertices in three space.

(b) There are only finitely many prime numbers.

False. One argues by contradiction. Suppose that there are finitely many primes and
the complete list of distinct primes is {p1, p2, . . . , pk}. Then one considers the number

x = p1 · p2 · · · pk + 1.

It is larger than any of the primes in the list, so should be composite, a product of
several of them. However, x is not divisible by any of the primes in the list, which is
a contradiction. Therefore, there must be infinitely many primes.
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(c) There are only finitely many Pythagorean Triples.

False. Pythagorean triples are positive integer solutions of the Diophantine equation
x2 + y2 = z2. Euclid showed that all solutions are of the form

x = (p2 − q2)r, y = 2pqr z = (p2 + q2)r

where p, q, r are integers, which range over infinitely many choices of (p, q, r). One
infinite family is given by multiples of one solution, e.g., (x, y, z) = (3r, 4r, 5r). Another
less trivial family is given by Euclid’s formuula with q = r = 1 and p tending to infinity.
Then the ratios y/x tend to zero showing that all of the triples in this family are not
multiples of one another.

(d) All real numbers are rational.

False. The numbers
√
p are not rational for p any prime. Arguing by contradiction,

suppose that it were rational so
√
p =

m

n
where m and n are integers with no common

factors. Squaring one finds pn2 = m2 so p | m2. Because p is prime, this means that
p | m, or in other words m = p` for some integer `. But this means that pn2 = p2`2 or
n2 = p`2. As before, this means p | n2 so p | n. We have reached a contradiction: p is
a common factor to both m and n. Thus

√
p could not have been rational.

4. The geometric mean of two positive magnitudes a and b is given by G(a, b) =
√
ab. Show that

the geometric mean can be constructed using straightedge and compass. Explain why your

construction gives the geometric mean. The arithmetic mean is given by A(a, b) =
a+ b

2
.

Show how to see from your diagram that G(a, b) ≤ A(a, b).

What famous problems resisted solution by straightedge and compass by the Greeks? Were
these problems ever solved by straightedge and compass? Were they ever solved by by other
means?

Here is the construction of the geometric mean of a and b. Put three points A, B and C on
the line so that the lengths L(AB) = a and L(BC) = b. Construct a circle whose diameter is

AC. That is, find the midpoint M between A and C so that r = L(AM) = L(MC) =
a+ b

2
.

Draw a perpendicular to the line at B. The perpendicular intersects the circle at P . The
geometric mean is x = L(BP ).

To see it, recall that the triangles 4(ABP ) and 4(PBC) are similar right triangles. The
ratio of side lengths are the same

x

a
=
b

x
so x2 = ab or x =

√
ab = G(a, b).

The hypotenuse of triangle 4(MBP ) of length r = A(a, b) is longer than either leg: r ≥ x
or A(a, b) ≥ G(a, b).
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Three famous problems that Greeks couldn’t solve using only straightedge and compass are
the doubling of the cube, trisecting an angle and squaring the circle. It’s been proved that
these problems can’t be solved using straightedge and compass only. However, the Greeks
were able to find solutions to these problems by using other graphic devices.

5. Even if the ratio
a

b
were irrational, how would Eudoxus show that it equals

c

d
using only

rational numbers? Compute the area of the inscribed hexagon which approximates the area of
a circle of radius r. How close is the approximation to the area? (You may use 30◦−60◦−90◦

triangles but may not use your knowledge of trigonometric functions or π.)

In Eudoxus’s theory of proportions, he says that
a

b
equals

c

d
if whenever there are rational

numbers p and q such that p <
a

b
< q, then p <

c

d
< q.

Let A denote the area of the circle C. Label the origin O and two neighboring vertices A

and B of the hexagon. The height of the triangle 4(OAB) is

√
3

2
r. This can be seen from

the Pythagorean theorem applied to a right triangle whose hypotenuse length is r and the

leg lengths are
r

2
and the height. The area of a single triangle

A(4(AOB)) =
1

2
· height · base =

1

2
·
√

3

2
r · r =

√
3 r2

4
.

Thus the area of the approximating hexagon is six times the area of one triangle, or

A(P6) = 6 ·A(4(AOB)) =
3
√

3 r2

2

Let Q6 be the circumscribing hexagon. Since P6 ⊂ C ⊂ Q6 we have A(P6) ≤ A ≤ A(Q6).
It follows that the error in estimating the area of the circle by the area of the inscribed
hexagon satisfies

0 ≤ A−A(P6) ≤ A(Q6)−A(P6).

The radius of Q6 is s. It is the hyporenuse of the 30◦ − 60◦ − 90◦ triangle 4(OAC) so has

length s =
2r√

3
. The areas grow like the squares of the radii so that

A(Q6)

A(P6)
=
s2

r2
=

4

3
.
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Thus, the error of approximation is no more than

0 ≤ A−A(P6) ≤ A(Q6)−A(P6) = A(P6)

(
A(Q6)

A(P6)
− 1

)
=

1

3
A(P6) =

√
3 r2

2
.

This can be seen geometrically too. The area of the region between P6 and Q6 may be
rearranged to make two triangles.
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