Math 2270 § 1.
Treibergs $a t$

Name: \qquad
Solutions
November 14, 2018

1. Let $A=\left(\begin{array}{ccc}2 & 0 & 0 \\ 1 & 1 & -2 \\ 1 & -1 & 0\end{array}\right)$. Find the characteristic polynomial of A. Find the eigenvalues. For each eigenvalue, find all eigenvectors.
The characteristic polynomial is

$$
\left|\begin{array}{ccc}
2-\lambda & 0 & 0 \\
1 & 1-\lambda & -2 \\
1 & -1 & -\lambda
\end{array}\right|=(2-\lambda)(1-\lambda)(-\lambda)-2(2-\lambda)=(2-\lambda)\left(\lambda^{2}-\lambda-2\right)=(2-\lambda)^{2}(1-\lambda)
$$

so the eigenvalues are $\lambda_{1}=-1$ with multiplicity one and $\lambda_{2}=2$ with multiplicity two. Solving for eigenvectors corresponding to $\lambda_{1}=-1$ we have the eigenspace

$$
\mathbf{0}=\left(A-\lambda_{1} I\right) \mathbf{x}_{1}=\left(\begin{array}{ccc}
3 & 0 & 0 \\
1 & 2 & -2 \\
1 & -1 & 1
\end{array}\right)\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \quad \text { so } \quad \mathcal{E}_{-1}=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

Solving for eigenvectors corresponding to $\lambda_{2}=2$ we have the eigenspace

$$
\mathbf{0}=\left(A-\lambda_{2} I\right)\left[\mathbf{x}_{2}, \mathbf{x}_{3}\right]=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & -1 & -2 \\
1 & -1 & -2
\end{array}\right)\left[\begin{array}{ll}
1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { so } \quad \mathcal{E}_{2}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]\right\}
$$

2. Let $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$. Show that the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$ and \mathbf{a}_{3} are linearly independent. Find a vector \mathbf{a}_{4} so that $\mathcal{B}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$ is a basis for \mathbf{R}^{4}. Explain why your choice works.
Just about any vector will work, so we try $\mathbf{a}_{4}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$. Putting the vectors as columns of A and row reducing,

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

There are no free variables, so the four columns of A are independent, thefore the first three vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$ and \mathbf{a}_{3} are linearly independent. Since the four vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ and \mathbf{a}_{4} are linearly independent in the four dimensional space \mathbb{R}^{4}, they form a basis.
3. Let $\mathbb{V}=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbf{R}\right\}$ be the vector space of 2×2 real matrices with the usual matrix addition and scalar multiplication. State four of the ten axioms satisfied by \mathbb{V} to make it a vector space. For the 1×2 matrix $B=\left(\begin{array}{ll}2 & 3\end{array}\right)$ let $\mathbb{W}=\left\{X \in \mathbb{V}: B X=\left(\begin{array}{ll}0 & 0\end{array}\right)\right\}$ be the subset of matrices satisfying the matrix equation. Show that \mathbb{W} is a vector subspace of \mathbb{V} by verifying that \mathbb{W} satisfies the conditions to be a vector subspace. Find a basis for the vector subspace \mathbb{W}.

You can state any four, but the first four are

- For every $\mathbf{x}, \mathbf{y} \in \mathbb{V}$ the $\operatorname{sum} \mathbf{x}+\mathbf{y}$ is in \mathbb{V}.
- For all $\mathbf{x}, \mathbf{y} \in \mathbb{V}$ there holds $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$.
- For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{V}$ there holds $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$.
- There is a zero vector $\mathbf{0}$ in \mathbb{V} such that for every \mathbf{x} in \mathbf{V} there holds $\mathbf{x}+\mathbf{0}=\mathbf{x}$.

See $p .192$ of the text for the complete list.
To show that \mathbb{W} is a vector subspace of \mathbb{V} we must show that it contains zero, that it is closed under vector addition and that it is closed under scalar multiplication.

- The zero of \mathbb{V} is the matrix $\mathbf{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. It satisfies the condition

$$
B \mathbf{0}=\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0
\end{array}\right)
$$

which is the condition to be in \mathbb{W}, so $\mathbf{0} \in \mathbb{W}$.

- Let \mathbf{x} and \mathbf{y} be any matrices in \mathbb{W}, hence they satisfy $B \mathbf{x}=B \mathbf{y}=\left(\begin{array}{ll}0 & 0\end{array}\right)$. Thus $B(\mathbf{x}+\mathbf{y})=\left(\begin{array}{ll}0 & 0\end{array}\right)$ which is the condition to be in \mathbb{W}, so $\mathbf{x}+\mathbf{y} \in \mathbb{W}$.
- Let c be any real number and \mathbf{x} be any matrix in \mathbb{W} so it satisfires $B \mathbf{x}=\left(\begin{array}{ll}0 & 0\end{array}\right)$. Thus $B(c \mathbf{x})=c B \mathbf{x}=c\left(\begin{array}{ll}0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0\end{array}\right)$ which is the condition to be in \mathbb{W}, so $c \mathbf{x} \in \mathbb{W}$.
The matrices $\mathbf{x}=\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{12}\end{array}\right)$ in \mathbb{W} satisfy

$$
\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left(\begin{array}{l}
x_{11} \\
x_{12} \\
x_{21}
\end{array} x_{12}\right)=\left(\begin{array}{ll}
0 & 0
\end{array}\right) \quad \text { or } \quad \begin{aligned}
& 2 x_{11}+3 x_{21}=0 \\
& 2 x_{12}+3 x_{22}=0
\end{aligned}
$$

Thus x_{21} and x_{22} are free, $x_{11}=-\frac{3}{3} x_{21}$ and $x_{12}=-\frac{3}{2} x_{22}$. It follows that the solutions are
$\mathbb{W}=\left\{\left(\begin{array}{cc}-\frac{3}{2} x_{21} & -\frac{3}{2} x_{22} \\ x_{21} & x_{22}\end{array}\right): x_{21}, x_{22} \in \mathbb{R}\right\}=\operatorname{Span}\left\{\left(\begin{array}{cc}-\frac{3}{2} & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & -\frac{3}{2} \\ 0 & 1\end{array}\right)\right\}=\operatorname{Span}\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$
The matrices \mathbf{b}_{1} and \mathbf{b}_{2} are not multiples of each other, thus are linearly independent so form a basis of \mathbb{W}.
4. (a) Let $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right), \mathbf{b}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$. Suppose $A \mathbf{x}=\mathbf{b}$. Find x_{3} using

Cramer's rule. (Other methods will receive no points.)

$$
x_{3}=\frac{\left|\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 3 \\
1 & 0 & 4
\end{array}\right|}{\left|\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right|}=\frac{4+3+0-0-0-2}{0+1+0-0-0-2}=\frac{5}{-1}=-5
$$

(b) Suppose A is $m \times n$ and B is $n \times p$. By comparing column space of $A B$ to the column space of A, show that $\operatorname{rank} A B \leq \operatorname{rank} A$.
The column space of A is

$$
\operatorname{Col} A=\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

and the column space of $A B$ is

$$
\operatorname{Col} A B=\left\{A B \mathbf{y}: \mathbf{y} \in \mathbb{R}^{p}\right\}=\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{R}^{n} \text { and } \mathbf{x}=B \mathbf{y} \text { for some } \mathbf{y} \in \mathbb{R}^{p} .\right\}
$$

Since the second set is more restricted, $\operatorname{Col} A B \subset \operatorname{Col} A$ so

$$
\operatorname{rank} A B=\operatorname{dim} \operatorname{Col} A B \leq \operatorname{dim} \operatorname{Col} A=\operatorname{rank} A
$$

5. Let $\mathbb{P}_{2}=\left\{a_{0}+a_{1} t+a_{2} t^{2}: a_{1}, a_{2}, a_{3} \in \mathbf{R}\right\}$ be the vector space of polynomials of degree at most two. Let $\mathcal{B}=\left\{1+t, t+t^{2}, 1+t^{2}\right\}, \mathcal{C}=\left\{1,1+t, 1+t+t^{2}\right\}$ be bases for \mathbb{P}_{2}. Recall that $[f(t)]_{\mathcal{B}}$ denotes the coordinates of $f \in \mathbb{P}_{2}$ in the \mathcal{B} basis. Find $\left[6 t+2 t^{2}\right]_{\mathcal{B}}$ and $\left[6 t+2 t^{2}\right]_{\mathcal{C}}$. Find the matrix for changing coordinates from the \mathcal{B} basis to the \mathcal{C} basis $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$. Check that your matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ transforms $\left[6 t+2 t^{2}\right]_{\mathcal{B}}$ to $\left[6 t+2 t^{2}\right]_{\mathcal{C}}$ by multiplying coordinates you found in (a) by the matrix from (b).
If $\left[6 t+2 t^{2}\right]_{\mathcal{B}}=\left[\begin{array}{l}k_{1} \\ k_{2} \\ k_{3}\end{array}\right]$ then

$$
6 t+2 t^{2}=k_{1}(1+t)+k_{2}\left(t+t^{2}\right)+k_{3}\left(1+t^{2}\right)
$$

Equating constants, t 's and t^{2} 's

$$
\begin{array}{rlrl}
k_{1}+ & k_{3} & =0 \\
k_{1}+k_{2} & =6 \\
k_{2}+k_{3} & =2
\end{array} \rightarrow \quad \rightarrow \quad k_{1}+\begin{aligned}
k_{3} & =0 \\
k_{2}-k_{3} & =6 \\
k_{2}+k_{3} & =2
\end{aligned} \quad \rightarrow \quad \begin{aligned}
k_{1}+\quad k_{3} & =0 \\
k_{2}-k_{3} & =6 \\
2 k_{2} & =8
\end{aligned}
$$

so $k_{2}=4, k_{3}=-2$ and $k_{1}=2$. Thus $\left[6 t+2 t^{2}\right]_{\mathcal{B}}=\left[\begin{array}{c}2 \\ 4 \\ -2\end{array}\right]$. Also, by inspection,

$$
6 t+2 t^{2}=-6(1)+4(1+t)+2\left(1+t+t^{2}\right)
$$

so $\left[6 t+2 t^{2}\right]_{\mathcal{C}}=\left[\begin{array}{c}-6 \\ 4 \\ 2\end{array}\right]$. If $[f]_{\mathcal{B}}=\left[\begin{array}{l}k_{1} \\ k_{2} \\ k_{3}\end{array}\right]$ then $f=k_{1} \mathbf{b}_{1}+k_{2} \mathbf{b}_{2}+k_{3} \mathbf{b}_{3}$. Taking the coordinate operator

$$
[f]_{\mathcal{C}}=k_{1}\left[\mathbf{b}_{1}\right]_{\mathcal{C}}+k_{2}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}+k_{3}\left[\mathbf{b}_{3}\right]_{\mathcal{C}}=\left(\begin{array}{lll}
{\left[\mathbf{b}_{1}\right]_{\mathcal{C}}} & {\left[\mathbf{b}_{1}\right]_{\mathcal{C}}} & {\left[\mathbf{b}_{1}\right]_{\mathcal{C}}}
\end{array}\right)\left[\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right]=\begin{gathered}
P \\
\mathcal{C} \leftarrow \mathcal{B}
\end{gathered}[f]_{\mathcal{B}}
$$

Computing by inspection

$$
\begin{aligned}
\mathbf{b}_{1}=1+t & =0 \cdot 1+1(1+t)+0\left(1+t+t^{2}\right) \\
\mathbf{b}_{2}=t+t^{2} & =(-1) \cdot 1+0(1+t)+1\left(1+t+t^{2}\right) \\
\mathbf{b}_{3}=1+t^{2} & =(1)-(1+t)+\left(1+t+t^{2}\right)
\end{aligned}
$$

so $\left[\mathbf{b}_{1}\right]_{\mathcal{C}}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\mathbf{b}_{2}\right]_{\mathcal{C}}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$ and $\left[\mathbf{b}_{3}\right]_{\mathcal{C}}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$. Hence $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left(\begin{array}{ccc}0 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right)$.
Checking,

$$
\left[6 t+2 t^{2}\right]_{\mathcal{C}}=\left[\begin{array}{c}
-6 \\
4 \\
2
\end{array}\right] \stackrel{?}{=}\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}\left[6 t+2 t^{2}\right]_{\mathcal{B}}
$$

we see that the matrix product equals the \mathcal{C} coordinates.

