
Math 2270 § 1.
Treibergs −−σιι

Third Midterm Exam Name: Solutions
November 14, 2018

1. Let A =

2 0 0
1 1 −2
1 −1 0

 . Find the characteristic polynomial of A. Find the eigenvalues.

For each eigenvalue, find all eigenvectors.

The characteristic polynomial is∣∣∣∣∣∣
2− λ 0 0

1 1− λ −2
1 −1 −λ

∣∣∣∣∣∣ = (2−λ)(1−λ)(−λ)− 2(2−λ) = (2−λ)(λ2−λ− 2) = (2−λ)2(1−λ)

so the eigenvalues are λ1 = −1 with multiplicity one and λ2 = 2 with multiplicity two.
Solving for eigenvectors corresponding to λ1 = −1 we have the eigenspace

0 = (A− λ1I)x1 =

3 0 0
1 2 −2
1 −1 1

0
1
1

 so E−1 = Span


0

1
1

 .

Solving for eigenvectors corresponding to λ2 = 2 we have the eigenspace

0 = (A− λ2I)[x2,x3] =

0 0 0
1 −1 −2
1 −1 −2

1 2
1 0
0 1

 so E2 = Span


1

1
0

 ,
2

0
1

 .

2. Let a1 =


1
1
1
1

 , a2 =


0
1
1
0

 , a3 =


1
1
0
0

 . Show that the vectors a1, a2 and a3 are linearly

independent. Find a vector a4 so that B = {a1, a2, a3, a4} is a basis for R4. Explain why
your choice works.

Just about any vector will work, so we try a4 =


0
0
0
1

. Putting the vectors as columns of

A and row reducing,
1 0 1 0
1 1 1 0
1 1 0 0
1 0 0 1

→


1 0 1 0
0 1 0 0
0 1 −1 0
0 0 −1 1

→


1 0 1 0
0 1 0 0
0 0 −1 0
0 0 −1 1

→


1 0 1 0
0 1 0 0
0 0 −1 0
0 0 0 1


There are no free variables, so the four columns of A are independent, thefore the first three
vectors a1, a2 and a3 are linearly independent. Since the four vectors a1, a2, a3 and a4 are
linearly independent in the four dimensional space R4, they form a basis.
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3. Let V =

{(
a b

c d

)
: a, b, c, d ∈ R

}
be the vector space of 2 × 2 real matrices with the usual

matrix addition and scalar multiplication. State four of the ten axioms satisfied by V to
make it a vector space. For the 1× 2 matrix B =

(
2 3

)
let W =

{
X ∈ V : BX =

(
0 0

)}
be the subset of matrices satisfying the matrix equation. Show that W is a vector subspace
of V by verifying that W satisfies the conditions to be a vector subspace. Find a basis for
the vector subspace W.

You can state any four, but the first four are

• For every x,y ∈ V the sum x + y is in V.

• For all x,y ∈ V there holds x + y = y + x.

• For all x,y, z ∈ V there holds (x + y) + z = x + (y + z).

• There is a zero vector 0 in V such that for every x in V there holds x + 0 = x.

See p. 192 of the text for the complete list.

To show that W is a vector subspace of V we must show that it contains zero, that it is
closed under vector addition and that it is closed under scalar multiplication.

• The zero of V is the matrix 0 =

(
0 0

0 0

)
. It satisfies the condition

B0 =
(
2 3

)(0 0

0 0

)
=
(
0 0

)
which is the condition to be in W, so 0 ∈W.

• Let x and y be any matrices in W, hence they satisfy Bx = By =
(
0 0

)
. Thus

B(x + y) =
(
0 0

)
which is the condition to be in W, so x + y ∈W.

• Let c be any real number and x be any matrix in W so it satisfires Bx =
(
0 0

)
. Thus

B(cx) = cBx = c
(
0 0

)
=
(
0 0

)
which is the condition to be in W, so cx ∈W.

The matrices x =

(
x11 x12
x21 x12

)
in W satisfy

(
2 3

)(x11 x12
x21 x12

)
=
(
0 0

)
or

2x11 + 3x21 = 0

2x12 + 3x22 = 0

Thus x21 and x22 are free, x11 = − 3
3x21 and x12 = − 3

2x22. It follows that the solutions are

W =

{(
− 3

2x21 − 3
2x22

x21 x22

)
: x21, x22 ∈ R

}
= Span

{(
− 3

2 0
1 0

)
,

(
0 − 3

2
0 1

)}
= Span{b1,b2}

The matrices b1 and b2 are not multiples of each other, thus are linearly independent so
form a basis of W.

4. (a) Let A =

1 1 2
0 1 1
1 0 0

 , b =

2
3
4

 , x =

x1x2
x3

. Suppose Ax = b. Find x3 using

Cramer’s rule. (Other methods will receive no points.)

x3 =

∣∣∣∣∣∣
1 1 2
0 1 3
1 0 4

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 2
0 1 1
1 0 0

∣∣∣∣∣∣
=

4 + 3 + 0− 0− 0− 2

0 + 1 + 0− 0− 0− 2
=

5

−1
= −5.
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(b) Suppose A is m× n and B is n× p. By comparing column space of AB to the column
space of A, show that rankAB ≤ rankA.

The column space of A is
ColA = {Ax : x ∈ Rn}

and the column space of AB is

ColAB = {ABy : y ∈ Rp} = {Ax : x ∈ Rn and x = By for some y ∈ Rp.}

Since the second set is more restricted, ColAB ⊂ ColA so

rankAB = dim ColAB ≤ dim ColA = rankA.

5. Let P2 =
{
a0 + a1t+ a2t

2 : a1, a2, a3 ∈ R
}

be the vector space of polynomials of degree at

most two. Let B =
{

1 + t, t+ t2, 1 + t2
}

, C =
{

1, 1 + t, 1 + t+ t2
}

be bases for P2.
Recall that [f(t)]B denotes the coordinates of f ∈ P2 in the B basis. Find [6t + 2t2]B and

[6t+ 2t2]C. Find the matrix for changing coordinates from the B basis to the C basis P
C←B .

Check that your matrix P
C←B transforms [6t+ 2t2]B to [6t+ 2t2]C by multiplying coordinates

you found in (a) by the matrix from (b).

If [6t+ 2t2]B =

k1k2
k3

 then

6t+ 2t2 = k1(1 + t) + k2(t+ t2) + k3(1 + t2).

Equating constants, t’s and t2’s

k1 + k3 = 0

k1 + k2 = 6

k2 + k3 = 2

→
k1 + k3 = 0

k2 − k3 = 6

k2 + k3 = 2

→
k1 + k3 = 0

k2 − k3 = 6

2k2 = 8

so k2 = 4, k3 = −2 and k1 = 2. Thus [6t+ 2t2]B =

 2
4
−2

. Also, by inspection,

6t+ 2t2 = −6(1) + 4(1 + t) + 2(1 + t+ t2).

so [6t+ 2t2]C =

−6
4
2

. If [f ]B =

k1k2
k3

 then f = k1b1 +k2b2 +k3b3. Taking the coordinate

operator

[f ]C = k1[b1]C + k2[b2]C + k3[b3]C =

[b1]C [b1]C [b1]C

k1k2
k3

 =
P

C←B
[f ]B.

Computing by inspection

b1 = 1 + t = 0 · 1 + 1(1 + t) + 0(1 + t+ t2)

b2 = t+ t2 = (−1) · 1 + 0(1 + t) + 1(1 + t+ t2)

b3 = 1 + t2 = (1)− (1 + t) + (1 + t+ t2)
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so [b1]C =

0
1
0

, [b2]C =

−1
0
1

 and [b3]C =

 1
−1
1

. Hence P
C←B =

0 −1 1
1 0 −1
0 1 1

.

Checking,

[6t+ 2t2]C =

−6
4
2

 ?
=

0 −1 1
1 0 −1
0 1 1

 2
4
−2

 =
P

C←B
[6t+ 2t2]B

we see that the matrix product equals the C coordinates.
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