Math $2270 \S 4$.	Second Midterm	Name: \quad Solutions
Treibergs $a t$		March 8, 2021

1. (a) Detemine whether each of the given matrices is invertible. Use as few calculations as possible. Justify your answer.

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 1 \\
1 & 2 & 2 & 1 \\
1 & 1 & 1 & 1
\end{array}\right], \quad \text { Not Invertible. }
$$

The first and last rows are equal. Row reduction will yield a zero row and so A is not row equivalent to I, thus not invertible.

$$
B=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 2 \\
1 & 1 & 2 & 2 \\
1 & 2 & 2 & 2
\end{array}\right], \quad \text { Invertible. }
$$

Row operations yield the matrix

$$
B \sim\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

which has a pivot in each row so B is row equivalent to I. Thus B is invertible.

$$
C=\left[\begin{array}{llll}
0 & 1 & 3 & 0 \\
1 & 1 & 2 & 2 \\
1 & 2 & 1 & 2 \\
0 & 3 & 1 & 0
\end{array}\right], \quad \text { Not Invertible. }
$$

The last column is twice the first so the columns of C are not linearly independent. Thus C is not invertible.
(b) Let A be an $n \times n$ matrix. Without quoting Theorems 7 or 8 , argue carefully why if there is a matrix D such that $A D=I$ then A is row equivalent to the identity matrix. We assume that there is a matrix D such that $A D=I$. Hence the system $A \mathbf{x}=\mathbf{b}$ may be solved for every $\mathbf{b} \in \mathbf{R}^{n}$. Indeed, by setting $\mathbf{x}=D \mathbf{b}$ we see that

$$
A \mathbf{x}=A(D \mathbf{b})=(A D) \mathbf{b}=I \mathbf{b}=\mathbf{b}
$$

The fact that $A \mathbf{x}=\mathbf{b}$ may be solved for every $\mathbf{b} \in \mathbf{R}^{n}$ says that there is a pivot in every row of the REF of A. Since A is an $n \times n$ matrix says that the RREF of A will be I. Thus A must be row equivalent to I.
2. Write a matrix equation that determines the loop currents. Using an inverse matrix, solve for the currents in terms of the resistances R_{1}, R_{2} and the voltage V. Compute the effective resistance $R^{*}=V / I_{1}$ of the dashed box (resistors in parallel.)

Using Kirchhoff's Loop Law, we find that the loop currents satisfy

$$
\begin{aligned}
R_{1}\left(I_{1}-I_{2}\right) & =V \\
R_{1}\left(I_{2}-I_{1}\right)+R_{2} I_{2} & =0 .
\end{aligned}
$$

Rewrite this system as the desired matrix equation,

$$
\left(\begin{array}{cc}
R_{1} & -R_{1} \\
-R_{1} & R_{1}+R_{2}
\end{array}\right)\left[\begin{array}{c}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{l}
V \\
0
\end{array}\right] .
$$

The solution may be given using the inverse matrix

$$
\begin{aligned}
{\left[\begin{array}{c}
I_{1} \\
I_{2}
\end{array}\right] } & =\left(\begin{array}{cc}
R_{1} & -R_{1} \\
-R_{1} & R_{1}+R_{2}
\end{array}\right)^{-1}\left[\begin{array}{c}
V \\
0
\end{array}\right] \\
& =\frac{1}{R_{1}\left(R_{1}+R_{2}\right)-R_{1}^{2}}\left(\begin{array}{cc}
R_{1}+R_{2} & R_{1} \\
R_{1} & R_{1}
\end{array}\right)\left[\begin{array}{l}
V \\
0
\end{array}\right] \\
& =\frac{V}{R_{1} R_{2}}\binom{R_{1}+R_{2}}{R_{1}} .
\end{aligned}
$$

The effective resistance is thus

$$
R^{*}=\frac{V}{I_{1}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Of course, this is the formula for resistors in parallel from freshman physics.
3. Let $A=\left[\begin{array}{lll}2 & 5 & 4 \\ 1 & 2 & 3 \\ 1 & 0 & 8\end{array}\right]$. Find the inverse matrix A^{-1}.

Augment the matrix by the identity and do row reductions.

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{llllll}
2 & 5 & 4 & 1 & 0 & 0 \\
1 & 2 & 3 & 0 & 1 & 0 \\
1 & 0 & 8 & 0 & 0 & 1
\end{array}\right]} & \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 3 & 0 & 1 & 0 \\
2 & 5 & 4 & 1 & 0 & 0 \\
1 & 0 & 8 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 2 & 3 & 0 & 1
\end{array} 0\right. \\
0 & 1 \\
-2 & 1 \\
-2 & 0 \\
0 & -2 \\
5 & 0 \\
-1 & 1
\end{array}\right]\right)
$$

So

$$
A^{-1}=\left[\begin{array}{ccc}
-16 & 40 & -7 \\
5 & -12 & 2 \\
2 & -5 & 1
\end{array}\right] . \quad \text { Check } \quad A A^{-1}=\left[\begin{array}{ccc}
2 & 5 & 4 \\
1 & 2 & 3 \\
1 & 0 & 8
\end{array}\right]\left[\begin{array}{ccc}
-16 & 40 & -7 \\
5 & -12 & 2 \\
2 & -5 & 1
\end{array}\right]=I
$$

4. (a) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation that first rotates vectors by $+\pi$ radians and then mirror-reflects them across the $x_{1}=x_{2}$ line. Find the standard matrix of T. The standard matrix is determined by what the transformation does to the basic vectors, namely, $T(\mathbf{x})=M \mathbf{x}$ where

$$
M=\left[\begin{array}{ll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right)
\end{array}\right], \quad \text { where } \quad \mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let R denote the rotation and S the rreflection, so $T=S \circ R$. Applying to \mathbf{e}_{1} we see that

$$
\begin{aligned}
& R\left(\mathbf{e}_{1}\right)=R\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \quad S\left(R\left(\mathbf{e}_{1}\right)\right)=S\left(\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \\
& R\left(\mathbf{e}_{2}\right)=R\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \quad S\left(R\left(\mathbf{e}_{2}\right)\right)=S\left(\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
\end{aligned}
$$

Hence

$$
M=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

(b) Find an LU factorization of the matrix A. Check your answer, where $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ 1 & 1 & 2 \\ -5 & 0 & 2\end{array}\right]$.Row reduce to the REF form of A, which will be our U. We may only use replacement operations where a lower row is replaced by the lower row plus a multiple of an upper row. We do not use exchange or scalar multiplication operations.

$$
\begin{aligned}
A=\left(\begin{array}{ccc}
3 & 1 & 1 \\
1 & 1 & 2 \\
-5 & 0 & 2
\end{array}\right) & \rightarrow\left(\begin{array}{ccc}
3 & 1 & 1 \\
0 & \frac{2}{3} & \frac{5}{3} \\
0 & \frac{5}{3} & \frac{11}{3}
\end{array}\right)=A_{2} \\
& \rightarrow\left(\begin{array}{ccc}
3 & 1 & 1 \\
0 & \frac{2}{3} & \frac{5}{3} \\
0 & 0 & -\frac{1}{2}
\end{array}\right)=U
\end{aligned}
$$

where we have used $\frac{11}{3}-\frac{5}{2} \cdot \frac{5}{3}=-\frac{1}{2}$. We reconstruct the first column of L by dividing the first column of A by a_{11}

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{3} & 1 & 0 \\
-\frac{5}{3} & * & 1
\end{array}\right)
$$

We reconstruct the second column of L by dividing the second column of A_{2} by \tilde{a}_{22}, the middle entry of A_{2},

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{3} & 1 & 0 \\
-\frac{5}{3} & \frac{5}{2} & 1
\end{array}\right)
$$

Check

$$
L U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{3} & 1 & 0 \\
-\frac{5}{3} & \frac{5}{2} & 1
\end{array}\right)\left(\begin{array}{ccc}
3 & 1 & 1 \\
0 & \frac{2}{3} & \frac{5}{3} \\
0 & 0 & -\frac{1}{2}
\end{array}\right)=\left(\begin{array}{ccc}
3 & 1 & 1 \\
1 & 1 & 2 \\
-5 & 0 & 2
\end{array}\right)=A
$$

where we have used $-\frac{5}{3} \cdot 1+\frac{5}{2} \cdot \frac{5}{3}-1 \cdot \frac{1}{2}=2$.
5. Determine whether the following statements are true or false. If true, give a short explanation. If false, find matrices for which the statement fails.
(a) Statement. If the product of two 2×2 matrices $A B=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ then $A=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ or $B=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
False. Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right)$. Then $A B=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
(b) Statement. If for the 2×2 matrix A the equation $A \mathbf{x}=\binom{1}{1}$ can be solved then A is invertible.
FALSE. $A \mathbf{x}=\mathbf{b}$ has to be soluble for every \mathbf{b} for A to be invertible. If we choose $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$ then $A \mathbf{x}=\binom{1}{1}$ is has the solution $\mathbf{x}=\binom{1}{0}$ since $A \mathbf{x}=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\binom{1}{0}=\binom{1}{1}$ but A is not invertible since its columns are linearly dependent.
(c) Statement. If a 2×2 matrix satisfies $A^{2}=I$ then a basis for $\operatorname{Col}(A)$ is $\left\{\binom{1}{0},\binom{0}{1}\right\}$. True. The equation $A^{2}=I$ says that there is a matrix D such that $A D=I$, namely $D=A$ itself, so A is its own inverse and A is invertible. Hence the span of the columns of A, namely $\operatorname{Col}(A)$, is \mathbf{R}^{2}. Now the unit basic vectors $\binom{1}{0}$ and $\binom{0}{1}$ span \mathbf{R}^{2}. As they are also linearly independent, $\left\{\binom{1}{0},\binom{0}{1}\right\}$ is a basis of $\mathbf{R}^{2}=\operatorname{Col}(A)$.
(Not part of answer.) There are in fact many matrices besides $\pm I$ which are their own inverses. For example if x and y are any real numbers such that $y \neq 0$ then $A=\left(\begin{array}{cc}x & 1 / y \\ \left(1-x^{2}\right) y & -x\end{array}\right)$ are all such, i.e.,

$$
\begin{aligned}
A^{2} & =\left(\begin{array}{cc}
x & \frac{1}{y} \\
\left(1-x^{2}\right) y & -x
\end{array}\right)\left(\begin{array}{cc}
x & \frac{1}{y} \\
\left(1-x^{2}\right) y & -x
\end{array}\right) \\
& =\left(\begin{array}{cc}
x^{2}+\left(1-x^{2}\right) & \frac{x}{y}-\frac{x}{y} \\
\left(1-x^{2}\right) x y-\left(1-x^{2}\right) x y & \left(1-x^{2}\right)+x^{2}
\end{array}\right)=I
\end{aligned}
$$

