Math 2270 § 4.	Second Midterm	Name:	Solutions
Treibergs σt		March 8, 2021	

1. (a) Detemine whether each of the given matrices is invertible. Use as few calculations as possible. Justify your answer.

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, \quad \text{NOT INVERTIBLE.}$$

The first and last rows are equal. Row reduction will yield a zero row and so A is not row equivalent to I, thus not invertible.

$$B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 2 \end{bmatrix}, \qquad \text{INVERTIBLE}.$$

Row operations yield the matrix

$$B \sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix},$$

which has a pivot in each row so B is row equivalent to I. Thus B is invertible.

$$C = \begin{bmatrix} 0 & 1 & 3 & 0 \\ 1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2 \\ 0 & 3 & 1 & 0 \end{bmatrix}, \quad \text{NOT INVERTIBLE.}$$

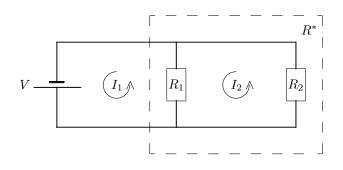
The last column is twice the first so the columns of C are not linearly independent. Thus C is not invertible.

(b) Let A be an $n \times n$ matrix. Without quoting Theorems 7 or 8, argue carefully why if there is a matrix D such that AD = I then A is row equivalent to the identity matrix. We assume that there is a matrix D such that AD = I. Hence the system $A\mathbf{x} = \mathbf{b}$ may be solved for every $\mathbf{b} \in \mathbf{R}^n$. Indeed, by setting $\mathbf{x} = D\mathbf{b}$ we see that

$$A\mathbf{x} = A(D\mathbf{b}) = (AD)\mathbf{b} = I\mathbf{b} = \mathbf{b}.$$

The fact that $A\mathbf{x} = \mathbf{b}$ may be solved for every $\mathbf{b} \in \mathbf{R}^n$ says that there is a pivot in every row of the REF of A. Since A is an $n \times n$ matrix says that the RREF of A will be I. Thus A must be row equivalent to I.

2. Write a matrix equation that determines the loop currents. Using an inverse matrix, solve for the currents in terms of the resistances R_1 , R_2 and the voltage V. Compute the effective resistance $R^* = V/I_1$ of the dashed box (resistors in parallel.)



Using Kirchhoff's Loop Law, we find that the loop currents satisfy

$$R_1(I_1 - I_2) = V$$
$$R_1(I_2 - I_1) + R_2I_2 = 0.$$

Rewrite this system as the desired matrix equation,

$$\begin{pmatrix} R_1 & -R_1 \\ -R_1 & R_1 + R_2 \end{pmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} V \\ 0 \end{bmatrix}.$$

The solution may be given using the inverse matrix

$$\begin{bmatrix} I_1\\I_2 \end{bmatrix} = \begin{pmatrix} R_1 & -R_1\\-R_1 & R_1 + R_2 \end{pmatrix}^{-1} \begin{bmatrix} V\\0 \end{bmatrix}$$
$$= \frac{1}{R_1(R_1 + R_2) - R_1^2} \begin{pmatrix} R_1 + R_2 & R_1\\R_1 & R_1 \end{pmatrix} \begin{bmatrix} V\\0 \end{bmatrix}$$
$$= \frac{V}{R_1 R_2} \begin{pmatrix} R_1 + R_2\\R_1 \end{pmatrix}.$$

The effective resistance is thus

$$R^* = \frac{V}{I_1} = \frac{R_1 R_2}{R_1 + R_2}.$$

Of course, this is the formula for resistors in parallel from freshman physics.

3. Let
$$A = \begin{bmatrix} 2 & 5 & 4 \\ 1 & 2 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$
. Find the inverse matrix A^{-1} .

Augment the matrix by the identity and do row reductions.

$$\begin{bmatrix} 2 & 5 & 4 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 0 & 1 & 0 \\ 2 & 5 & 4 & 1 & 0 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 0 & 1 & 0 \\ 0 & 1 & -2 & 1 & -2 & 0 \\ 0 & -2 & 5 & 0 & -1 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 7 & -2 & 5 & 0 \\ 0 & 1 & -2 & 1 & -2 & 0 \\ 0 & 0 & 1 & 2 & -5 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -16 & 40 & -7 \\ 0 & 1 & 0 & 5 & -12 & 2 \\ 0 & 0 & 1 & 2 & -5 & 1 \end{bmatrix}$$
So

S

$$A^{-1} = \begin{bmatrix} -16 & 40 & -7\\ 5 & -12 & 2\\ 2 & -5 & 1 \end{bmatrix}.$$
 Check $AA^{-1} = \begin{bmatrix} 2 & 5 & 4\\ 1 & 2 & 3\\ 1 & 0 & 8 \end{bmatrix} \begin{bmatrix} -16 & 40 & -7\\ 5 & -12 & 2\\ 2 & -5 & 1 \end{bmatrix} = I.$

4. (a) Let $T : \mathbf{R}^2 \to \mathbf{R}^2$ be a linear transformation that first rotates vectors by $+\pi$ radians and then mirror-reflects them across the $x_1 = x_2$ line. Find the standard matrix of T. The standard matrix is determined by what the transformation does to the basic vectors, namely, $T(\mathbf{x}) = M\mathbf{x}$ where

$$M = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix}, \quad \text{where} \quad \mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Let R denote the rotation and S the reflection, so $T = S \circ R$. Applying to \mathbf{e}_1 we see that

$$R(\mathbf{e}_{1}) = R\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}-1\\0\end{bmatrix}, \qquad S(R(\mathbf{e}_{1})) = S\left(\begin{bmatrix}-1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\-1\end{bmatrix}$$
$$R(\mathbf{e}_{2}) = R\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\-1\end{bmatrix}, \qquad S(R(\mathbf{e}_{2})) = S\left(\begin{bmatrix}0\\-1\end{bmatrix}\right) = \begin{bmatrix}-1\\0\end{bmatrix}$$

Hence

$$M = \begin{bmatrix} 0 & -1 \\ & & \\ -1 & 0 \end{bmatrix}$$

(b) Find an LU factorization of the matrix A. Check your answer, where $A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & 2 \\ -5 & 0 & 2 \end{bmatrix}$. Row

reduce to the REF form of A, which will be our U. We may only use replacement operations where a lower row is replaced by the lower row plus a multiple of an upper row. We do not use exchange or scalar multiplication operations.

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 1 & 2 \\ -5 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 3 & 1 & 1 \\ 0 & \frac{2}{3} & \frac{5}{3} \\ 0 & \frac{5}{3} & \frac{11}{3} \end{pmatrix} = A_2$$
$$\to \begin{pmatrix} 3 & 1 & 1 \\ 0 & \frac{2}{3} & \frac{5}{3} \\ 0 & 0 & -\frac{1}{2} \end{pmatrix} = U$$

where we have used $\frac{11}{3} - \frac{5}{2} \cdot \frac{5}{3} = -\frac{1}{2}$. We reconstruct the first column of L by dividing the first column of A by a_{11}

$$L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{3} & 1 & 0 \\ -\frac{5}{3} & * & 1 \end{pmatrix}.$$

We reconstruct the second column of L by dividing the second column of A_2 by \tilde{a}_{22} , the middle entry of A_2 ,

$$L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{3} & 1 & 0 \\ -\frac{5}{3} & \frac{5}{2} & 1 \end{pmatrix}.$$

Check

$$LU = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{3} & 1 & 0 \\ -\frac{5}{3} & \frac{5}{2} & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ 0 & \frac{2}{3} & \frac{5}{3} \\ 0 & 0 & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 1 & 2 \\ -5 & 0 & 2 \end{pmatrix} = A.$$

where we have used $-\frac{5}{3} \cdot 1 + \frac{5}{2} \cdot \frac{5}{3} - 1 \cdot \frac{1}{2} = 2.$

- 5. Determine whether the following statements are true or false. If true, give a short explanation. If false, find matrices for which the statement fails.
 - (a) STATEMENT. If the product of two 2×2 matrices $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ then $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ or $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

FALSE. Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$. Then $AB = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

(b) STATEMENT. If for the 2×2 matrix A the equation $A\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ can be solved then A is invertible.

FALSE. $A\mathbf{x} = \mathbf{b}$ has to be soluble for every **b** for A to be invertible. If we choose $A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ then $A\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is has the solution $\mathbf{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ since $A\mathbf{x} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ but A is not invertible since its columns are linearly dependent.

(c) STATEMENT. If a 2×2 matrix satisfies $A^2 = I$ then a basis for $\operatorname{Col}(A)$ is $\{\binom{1}{0}, \binom{0}{1}\}$. TRUE. The equation $A^2 = I$ says that there is a matrix D such that AD = I, namely D = A itself, so A is its own inverse and A is invertible. Hence the span of the columns of A, namely $\operatorname{Col}(A)$, is \mathbb{R}^2 . Now the unit basic vectors $\binom{1}{0}$ and $\binom{0}{1}$ span \mathbb{R}^2 . As they are also linearly independent, $\{\binom{1}{0}, \binom{0}{1}\}$ is a basis of $\mathbb{R}^2 = \operatorname{Col}(A)$.

(Not part of answer.) There are in fact many matrices besides $\pm I$ which are their own inverses. For example if x and y are any real numbers such that $y \neq 0$ then $A = \begin{pmatrix} x & 1/y \\ (1-x^2)y & -x \end{pmatrix}$ are all such, *i.e.*,

$$\begin{aligned} A^2 &= \begin{pmatrix} x & \frac{1}{y} \\ (1-x^2)y & -x \end{pmatrix} \begin{pmatrix} x & \frac{1}{y} \\ (1-x^2)y & -x \end{pmatrix} \\ &= \begin{pmatrix} x^2 + (1-x^2) & \frac{x}{y} - \frac{x}{y} \\ (1-x^2)xy - (1-x^2)xy & (1-x^2) + x^2 \end{pmatrix} = I. \end{aligned}$$