Math $2270 \S 4$.	First Midterm	Name: $\frac{\text { Solutions }}{\text { Treibergs } a t}$

1. Describe the solution of this system in parametric vector form. You must show all steps to receive full credit.

$$
\begin{aligned}
3 x_{2}+2 x_{3}+2 x_{4}+x_{5}= & 4 \\
x_{1}+6 x_{2}+5 x_{3}+4 x_{4}+2 x_{5}= & 8 \\
3 x_{1}+3 x_{2}+5 x_{3}+2 x_{4}+2 x_{5}= & 4
\end{aligned}
$$

Write the augmented matrix and perform row operations.

$$
\begin{aligned}
\left(\begin{array}{llllll}
0 & 3 & 2 & 2 & 1 & 4 \\
1 & 6 & 5 & 4 & 2 & 8 \\
3 & 3 & 5 & 2 & 2 & 4
\end{array}\right) & \rightarrow\left(\begin{array}{cccccc}
1 & 6 & 5 & 4 & 2 & 8 \\
0 & 3 & 2 & 2 & 1 & 4 \\
3 & 3 & 5 & 2 & 2 & 4
\end{array}\right) \quad \text { Swap } R_{1} \text { and } R_{2} \\
& \rightarrow\left(\begin{array}{cccccc}
1 & 6 & 5 & 4 & 2 & 8 \\
0 & 3 & 2 & 2 & 1 & 4 \\
0 & -15 & -10 & -10 & -4 & -20
\end{array}\right) \quad \text { Replace } R_{3} \text { by } R_{3}-3 R_{1} \\
& \rightarrow\left(\begin{array}{cccccc}
1 & 6 & 5 & 4 & 2 & 8 \\
0 & 3 & 2 & 2 & 1 & 4 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \quad \text { Replace } R_{3} \text { by } R_{3}+5 R_{2}
\end{aligned}
$$

x_{3} and x_{4} are free variables and can be set to any real value. Solving we find

$$
\begin{aligned}
x_{5} & =0 \\
3 x_{2} & =4-2 x_{3}-2 x_{4}-x_{5}=4-2 x_{3}-2 x_{4}, \quad \text { hence } x_{2}=\frac{4}{3}-\frac{2}{3} x_{3}-\frac{2}{3} x_{4} . \\
x_{1} & =8-6 x_{2}-5 x_{3}-4 x_{4}-2 x_{5}=8-6\left(\frac{4}{3}-\frac{2}{3} x_{3}-\frac{2}{3} x_{4}\right)-5 x_{3}-4 x_{4}-2 x_{5} \\
& =8-8+4 x_{3}+4 x_{4}-5 x_{3}-4 x_{4}=-x_{3} .
\end{aligned}
$$

Thus the set of solutions is

$$
\mathcal{S}=\left\{\left[\begin{array}{c}
-x_{3} \\
\frac{4}{3}-\frac{2}{3} x_{3}-\frac{2}{3} x_{4} \\
x_{3} \\
x_{4} \\
0
\end{array}\right]: \text { where } x_{3} \text { and } x_{4} \text { are any real numbers. }\right\}
$$

or in parametric vector form

$$
\mathcal{S}=\left\{\left[\begin{array}{l}
0 \\
\frac{4}{3} \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
-\frac{2}{3} \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
-\frac{2}{3} \\
0 \\
1 \\
0
\end{array}\right]: \text { where } x_{3} \text { and } x_{4} \text { are any real numbers. }\right\}
$$

2. Let

$$
A=\left[\begin{array}{cccc}
4 & 1 & 5 & 2 \\
3 & 2 & -1 & 2 \\
2 & 2 & 8 & 2
\end{array}\right]
$$

Do the columns of A span \mathbf{R}^{3} ? Explain. Are the columns of A linearly independnt? Explain. Perform row operations

$$
\begin{aligned}
\left(\begin{array}{cccc}
4 & 1 & 5 & 2 \\
3 & 2 & -1 & 2 \\
2 & 2 & 8 & 2
\end{array}\right) & \rightarrow\left(\begin{array}{cccc}
2 & 2 & 8 & 2 \\
3 & 2 & -1 & 2 \\
4 & 1 & 5 & 2
\end{array}\right) \text { Swap } R 1 \text { and } R 3 \\
& \rightarrow\left(\begin{array}{cccc}
1 & 1 & 4 & 1 \\
3 & 2 & -1 & 2 \\
4 & 1 & 5 & 2
\end{array}\right) \text { Divide } R 1 \text { by } 2 \\
& \rightarrow\left(\begin{array}{cccc}
1 & 1 & 4 & 1 \\
0 & -1 & -13 & -1 \\
0 & -3 & -11 & -2
\end{array}\right) \text { Replace } R 2 \text { by } R 2-3 R_{1} \\
& \rightarrow\left(\begin{array}{cccc}
1 & 1 & 4 & 1 \\
0 & -1 & -13 & -1 \\
0 & 0 & 28 & 1
\end{array}\right) \text { Replace } R 3 \text { by } R 3-4 R_{1} \\
& \rightarrow \text { Replace } R 3 \text { by } R 3-3 R_{2}
\end{aligned}
$$

There is a pivot in each row. Hence, the columns of $A \operatorname{span} \mathbf{R}^{3}$. There are more than three columns, so the columns cannot be linearly independent. Indeed, A has the free variable x_{4}, thus there is a nontrivial solution of $A \mathbf{x}=\mathbf{0}$ which gives a notrivial dependency relation between the columns of A.
3. (a) Let A be an $n \times n$ matrix. Show that $A \mathbf{x}=\mathbf{b}$ is consistent for all and $\mathbf{b} \in \mathbf{R}^{n}$ if and only if $A \mathbf{x}=\mathbf{0}$ has a unique solution.
$A \mathbf{x}=\mathbf{b}$ is consistent for all and $\mathbf{b} \in \mathbf{R}^{n}$ if and only if the REF of A has a pivot in each row. But for square $n \times n$ matrices, this accurs if and only if there is a pivot in each column. But this happens if and only if $A \mathbf{x}=\mathbf{0}$ has a unique solution.
(b) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation such that

$$
T\left(\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
4
\end{array}\right], \quad T\left(\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right)=\left[\begin{array}{l}
4 \\
4
\end{array}\right]
$$

Solve $\left[\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 9\end{array}\right]$. Find $T\left(\left[\begin{array}{l}1 \\ 9\end{array}\right]\right)$.
First we solve $\left[\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 9\end{array}\right]$. The augmented matrix row reduces

$$
\left(\begin{array}{lll}
2 & 1 & 1 \\
2 & 3 & 9
\end{array}\right) \rightarrow\left(\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 8
\end{array}\right)
$$

so $x_{2}=4$ and $2 x_{1}=1-x_{2}=-3$ so $x_{1}=-\frac{3}{2}$. This expresses the last vector as a linear combination

$$
\left[\begin{array}{l}
1 \\
9
\end{array}\right]=x_{1}\left[\begin{array}{l}
2 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
3
\end{array}\right]=-\frac{3}{2}\left[\begin{array}{l}
2 \\
2
\end{array}\right]+4\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

It follows by linearity of T that

$$
\begin{aligned}
T\left(\left[\begin{array}{l}
1 \\
9
\end{array}\right]\right) & =T\left(-\frac{3}{2}\left[\begin{array}{l}
2 \\
2
\end{array}\right]+4\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right)=-\frac{3}{2} T\left(\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right)+4 T\left(\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right) \\
& =-\frac{3}{2}\left[\begin{array}{l}
0 \\
4
\end{array}\right]+4\left[\begin{array}{l}
4 \\
4
\end{array}\right]=\left[\begin{array}{l}
16 \\
10
\end{array}\right] .
\end{aligned}
$$

4. (a) Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a transformation. Define: the transforation T is linear.

The transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if for every $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$ and every $c \in \mathbf{R}$ we have $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ and $T(c \mathbf{u})=c T(\mathbf{u})$.
Let $N\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} x_{2} \\ 0\end{array}\right]$.
(b) Give an example of a transformation $N: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ such that $N(\mathbf{0})=\mathbf{0}$ but N is not linear. Why is your transformation nonlinear?
Let $N\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}^{2} \\ 0\end{array}\right]$. We have $N(\mathbf{0})=\mathbf{0}$. But neither condition of linearity holds. For example, for $\mathbf{u}=\mathbf{v}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$ Then

$$
\begin{aligned}
N(\mathbf{u}+\mathbf{v}) & =N\left(\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]\right)=N\left(\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
16 \\
0
\end{array}\right] \\
& \neq\left[\begin{array}{l}
8 \\
0
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right]+\left[\begin{array}{l}
4 \\
0
\end{array}\right]=N\left(\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]\right)+N\left(\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]\right)=N(\mathbf{u})+N(\mathbf{v})
\end{aligned}
$$

(c) $\operatorname{Let} T(\mathbf{x})=A \mathbf{x}$. Is \mathbf{b} in rhe range of T where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
4 & 3 \\
0 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
5 \\
5 \\
3
\end{array}\right] ?
$$

Forming the augmented matrix $(A \mid)$ and row reducing, we find

$$
\begin{aligned}
\left(\begin{array}{lll}
1 & 2 & 5 \\
4 & 3 & 5 \\
0 & 1 & 3
\end{array}\right) & \rightarrow\left(\begin{array}{ccc}
1 & 2 & 5 \\
0 & -5 & -15 \\
0 & 1 & 3
\end{array}\right) \quad \text { Replace } R_{2} \text { by } R_{2}-4 R_{1} \\
& \rightarrow\left(\begin{array}{lll}
1 & 2 & 5 \\
0 & 0 & 0 \\
0 & 1 & 3
\end{array}\right) \quad \text { Replace } R_{2} \text { by } R 2+5 R 3
\end{aligned}
$$

The equations $A \mathbf{x}=\mathbf{b}$ are consistent. Thus \mathbf{b} is in the range of T.
5. Suppose that the row echelon form of the matrix A is R. Can $A \mathbf{x}=\mathbf{b}$ be solved for every $\mathbf{b} \in \mathbf{R}^{4}$? Explain why or why not. Suppose that the row echelon form of the matrix B is S. Is the solution of $B \mathbf{x}=\mathbf{0}$ unique? Explain why or why not. For the same B, let $T(\mathbf{x})=B \mathbf{x}$. Is the range of T equal to \mathbf{R}^{6} ? Explain why or why not. For "*" representing any number, the matrices are given by

$$
R=\left[\begin{array}{llllll}
1 & * & * & * & * & * \\
0 & 0 & 2 & * & * & * \\
0 & 0 & 0 & 0 & 3 & * \\
0 & 0 & 0 & 0 & 0 & 4
\end{array}\right], \quad S=\left[\begin{array}{cccc}
1 & * & * & * \\
0 & 2 & * & * \\
0 & 0 & 3 & * \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$A \mathbf{x}=\mathbf{b}$ can be solved for every $\mathbf{b} \in \mathbf{R}^{4}$? because its REF R has a pivot in every row.
The solution of $B \mathbf{x}=\mathbf{0}$, namely $\mathbf{x}=\mathbf{0}$, is unique since there are no free variables.
The range of $T(\mathbf{x})=B \mathbf{x}$ does not equal \mathbf{R}^{6}. For some choices of $\mathbf{c} \in \mathbf{R}^{6}$, the row reductions $(B \mid c) \rightarrow(S \mid \tilde{\mathbf{c}})$ may not be consistent. The reduction may result in a $\tilde{\mathbf{c}}$ that is not zero in the fifth row, so there is no \mathbf{x} such that $T(\mathbf{x})=\mathbf{c}$ for this \mathbf{c}.
6. Find the general flow pattern of the network shown in the figure. Assuming that all the flows are nonnegative, what is the largest possible value for x_{4} ?

Let x_{1}, \ldots, x_{4} be the flow rates (say in cars per minute) in the indicated directions of the segments. At each junction, there is a balance of cars entering the intersection and cars leaving the intersection each minute. Writing the balance equations,

$$
\begin{align*}
90 & =x_{1}+x_{2}+x_{3} \tag{A}\\
x_{1} & =x_{4}+50 \tag{B}\\
x_{2}+x_{3}+x_{4} & =40 \tag{C}
\end{align*}
$$

Moving variables to the left and constants to the right, we write the augmented matrix of the resulting system. Then we perform row operations.

$$
\begin{aligned}
\left(\begin{array}{ccccc}
-1 & -1 & -1 & 0 & -90 \\
1 & 0 & 0 & -1 & 50 \\
0 & 1 & 1 & 1 & 40
\end{array}\right) & \rightarrow\left(\begin{array}{ccccc}
1 & 1 & 1 & 0 & 90 \\
0 & -1 & -1 & -1 & -40 \\
0 & 1 & 1 & 1 & 40
\end{array}\right) \quad \begin{array}{c}
\text { Replace } R_{1} \text { by }-R_{1} \\
\text { Replace } R_{2} \text { by } R_{2}+R_{1}
\end{array} \\
& \rightarrow\left(\begin{array}{ccccc}
1 & 1 & 1 & 0 & 90 \\
0 & 1 & 1 & 1 & 40 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \begin{array}{r}
\text { Replace } R_{2} \text { by }-R_{2} \\
\text { Replace } R_{3} \text { by } R_{3}+R_{3}
\end{array}
\end{aligned}
$$

Thus x_{3} and x_{4} are free and can take any values. Solving we find

$$
\begin{aligned}
& x_{2}=40-x_{3}-x_{4} \\
& x_{1}=90-x_{2}-x_{3}=90-\left(40-x_{3}-x_{4}\right)-x_{3}=50+x_{4} .
\end{aligned}
$$

If all flow is in the direction of arrows, then $x_{i} \geq 0$. But this implies

$$
x_{2}=40-x_{3}-x_{4} \geq 0
$$

which implies

$$
x_{4} \leq 40-x_{3} \leq 40
$$

because $x_{3} \geq 0$. This is the maximum possible x_{4}. In fact, taking $x_{3}=0$ and $x_{4}=40$ yields $x_{1}=90$ and $x_{2}=0$ we see that a valid flow takes the maximal x_{4} value of 40 .

