Math 2270 § 4.	First Midterm	Name: Solutions
Treibergs σt		February 10, 2021

1. Describe the solution of this system in parametric vector form. You must show all steps to receive full credit.

$$3x_2 + 2x_3 + 2x_4 + x_5 = 4$$

$$x_1 + 6x_2 + 5x_3 + 4x_4 + 2x_5 = 8$$

$$3x_1 + 3x_2 + 5x_3 + 2x_4 + 2x_5 = 4$$

Write the augmented matrix and perform row operations.

$$\begin{pmatrix} 0 & 3 & 2 & 2 & 1 & 4 \\ 1 & 6 & 5 & 4 & 2 & 8 \\ 3 & 3 & 5 & 2 & 2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 6 & 5 & 4 & 2 & 8 \\ 0 & 3 & 2 & 2 & 1 & 4 \\ 3 & 3 & 5 & 2 & 2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 6 & 5 & 4 & 2 & 8 \\ 3 & 3 & 5 & 2 & 2 & 4 \end{pmatrix}$$
Swap R_1 and R_2
$$\rightarrow \begin{pmatrix} 1 & 6 & 5 & 4 & 2 & 8 \\ 0 & 3 & 2 & 2 & 1 & 4 \\ 0 & -15 & -10 & -10 & -4 & -20 \end{pmatrix}$$
Replace R_3 by $R_3 - 3R_1$
$$\rightarrow \begin{pmatrix} 1 & 6 & 5 & 4 & 2 & 8 \\ 0 & 3 & 2 & 2 & 1 & 4 \\ 0 & 3 & 2 & 2 & 1 & 4 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$
Replace R_3 by $R_3 + 5R_2$

 x_3 and x_4 are free variables and can be set to any real value. Solving we find

$$x_{5} = 0$$

$$3x_{2} = 4 - 2x_{3} - 2x_{4} - x_{5} = 4 - 2x_{3} - 2x_{4}, \text{ hence } x_{2} = \frac{4}{3} - \frac{2}{3}x_{3} - \frac{2}{3}x_{4}.$$

$$x_{1} = 8 - 6x_{2} - 5x_{3} - 4x_{4} - 2x_{5} = 8 - 6\left(\frac{4}{3} - \frac{2}{3}x_{3} - \frac{2}{3}x_{4}\right) - 5x_{3} - 4x_{4} - 2x_{5}$$

$$= 8 - 8 + 4x_{3} + 4x_{4} - 5x_{3} - 4x_{4} = -x_{3}.$$

Thus the set of solutions is

$$S = \left\{ \begin{bmatrix} -x_3 \\ \frac{4}{3} - \frac{2}{3}x_3 - \frac{2}{3}x_4 \\ x_3 \\ x_4 \\ 0 \end{bmatrix} : \text{where } x_3 \text{ and } x_4 \text{ are any real numbers.} \right\}$$

or in parametric vector form

$$S = \left\{ \begin{array}{c} \begin{bmatrix} 0 \\ \frac{4}{3} \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ -\frac{2}{3} \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ -\frac{2}{3} \\ 0 \\ 1 \\ 0 \end{bmatrix} : \text{where } x_3 \text{ and } x_4 \text{ are any real numbers.} \right\}.$$

2. Let

$$A = \begin{bmatrix} 4 & 1 & 5 & 2 \\ 3 & 2 & -1 & 2 \\ 2 & 2 & 8 & 2 \end{bmatrix}$$

Do the columns of A span \mathbb{R}^3 ? Explain. Are the columns of A linearly independnt? Explain. Perform row operations

$$\begin{pmatrix} 4 & 1 & 5 & 2 \\ 3 & 2 & -1 & 2 \\ 2 & 2 & 8 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 2 & 8 & 2 \\ 3 & 2 & -1 & 2 \\ 4 & 1 & 5 & 2 \end{pmatrix}$$
Swap *R*1 and *R*3
$$\rightarrow \begin{pmatrix} 1 & 1 & 4 & 1 \\ 3 & 2 & -1 & 2 \\ 4 & 1 & 5 & 2 \end{pmatrix}$$
Divide *R*1 by 2
$$\rightarrow \begin{pmatrix} 1 & 1 & 4 & 1 \\ 0 & -1 & -13 & -1 \\ 0 & -3 & -11 & -2 \end{pmatrix}$$
Replace *R*2 by *R*2 - 3*R*₁
Replace *R*3 by *R*3 - 4*R*₁
$$\rightarrow \begin{pmatrix} 1 & 1 & 4 & 1 \\ 0 & -1 & -13 & -1 \\ 0 & 0 & 28 & 1 \end{pmatrix}$$
Replace *R*3 by *R*3 - 3*R*₂

There is a pivot in each row. Hence, the columns of A span \mathbb{R}^3 . There are more than three columns, so the columns cannot be linearly independent. Indeed, A has the free variable x_4 , thus there is a nontrivial solution of $A\mathbf{x} = \mathbf{0}$ which gives a notrivial dependency relation between the columns of A.

3. (a) Let A be an $n \times n$ matrix. Show that $A\mathbf{x} = \mathbf{b}$ is consistent for all and $\mathbf{b} \in \mathbf{R}^n$ if and only if $A\mathbf{x} = \mathbf{0}$ has a unique solution.

 $A\mathbf{x} = \mathbf{b}$ is consistent for all and $\mathbf{b} \in \mathbf{R}^n$ if and only if the REF of A has a pivot in each row. But for square $n \times n$ matrices, this accurs if and only if there is a pivot in each column. But this happens if and only if $A\mathbf{x} = \mathbf{0}$ has a unique solution.

(b) Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be a linear transformation such that

$$T\left(\begin{bmatrix}2\\2\end{bmatrix}\right) = \begin{bmatrix}0\\4\end{bmatrix}, \quad T\left(\begin{bmatrix}1\\3\end{bmatrix}\right) = \begin{bmatrix}4\\4\end{bmatrix}$$

 $Solve\begin{bmatrix} 2 & 1\\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 1\\ 9 \end{bmatrix}. \text{ Find } T\left(\begin{bmatrix} 1\\ 9 \end{bmatrix}\right).$ First we solve $\begin{bmatrix} 2 & 1\\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 1\\ 9 \end{bmatrix}.$ The augmented matrix row reduces $\begin{pmatrix} 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \end{pmatrix}$

$$\begin{pmatrix} 2 & 1 & 1 \\ 2 & 3 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 1 \\ 0 & 2 & 8 \end{pmatrix}$$

so $x_2 = 4$ and $2x_1 = 1 - x_2 = -3$ so $x_1 = -\frac{3}{2}$. This expresses the last vector as a linear combination

$$\begin{bmatrix} 1\\9 \end{bmatrix} = x_1 \begin{bmatrix} 2\\2 \end{bmatrix} + x_2 \begin{bmatrix} 1\\3 \end{bmatrix} = -\frac{3}{2} \begin{bmatrix} 2\\2 \end{bmatrix} + 4 \begin{bmatrix} 1\\3 \end{bmatrix}.$$

It follows by linearity of T that

$$T\left(\left[\begin{array}{c}1\\9\end{array}\right]\right) = T\left(-\frac{3}{2}\left[\begin{array}{c}2\\2\end{array}\right] + 4\left[\begin{array}{c}1\\3\end{array}\right]\right) = -\frac{3}{2}T\left(\left[\begin{array}{c}2\\2\end{array}\right]\right) + 4T\left(\left[\begin{array}{c}1\\3\end{array}\right]\right)$$
$$= -\frac{3}{2}\left[\begin{array}{c}0\\4\end{array}\right] + 4\left[\begin{array}{c}4\\4\end{array}\right] = \left[\begin{array}{c}16\\10\end{array}\right].$$

4. (a) Let $T : \mathbf{R}^n \to \mathbf{R}^m$ be a transformation. Define: the transformation T is linear. The transformation $T: \mathbf{R}^n \to \mathbf{R}^m$ is linear if for every $\mathbf{u}, \mathbf{v} \in \mathbf{R}^n$ and every $c \in \mathbf{R}$ we have $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ and $T(c\mathbf{u}) = cT(\mathbf{u})$.

Let
$$N\left(\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1x_2\\ 0 \end{bmatrix}.$$

(b) Give an example of a transformation $N: \mathbf{R}^3 \to \mathbf{R}^2$ such that $N(\mathbf{0}) = \mathbf{0}$ but N is not linear. Why is your transformation nonlinear?

Let $N\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_1^2\\0\end{bmatrix}$. We have $N(\mathbf{0}) = \mathbf{0}$. But neither condition of linearity holds. For example, for $\mathbf{u} = \mathbf{v} = \begin{bmatrix} 2\\0\\0\end{bmatrix}$ Then

$$N(\mathbf{u} + \mathbf{v}) = N\left(\begin{bmatrix} 2\\0\\0 \end{bmatrix} + \begin{bmatrix} 2\\0\\0 \end{bmatrix} \right) = N\left(\begin{bmatrix} 4\\0\\0 \end{bmatrix} \right) = \begin{bmatrix} 16\\0 \end{bmatrix}$$
$$\neq \begin{bmatrix} 8\\0 \end{bmatrix} = \begin{bmatrix} 4\\0 \end{bmatrix} + \begin{bmatrix} 4\\0 \end{bmatrix} = N\left(\begin{bmatrix} 2\\0\\0 \end{bmatrix} \right) + N\left(\begin{bmatrix} 2\\0\\0 \end{bmatrix} \right) = N(\mathbf{u}) + N(\mathbf{v}).$$

(c) Let $T(\mathbf{x}) = A\mathbf{x}$. Is **b** in the range of T where

$$A = \begin{bmatrix} 1 & 2\\ 4 & 3\\ 0 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 5\\ 5\\ 3 \end{bmatrix}?$$

Forming the augmented matrix (A|) and row reducing, we find

$$\begin{pmatrix} 1 & 2 & 5 \\ 4 & 3 & 5 \\ 0 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 5 \\ 0 & -5 & -15 \\ 0 & 1 & 3 \end{pmatrix}$$
Replace R_2 by $R_2 - 4R_1$
$$\rightarrow \begin{pmatrix} 1 & 2 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 3 \end{pmatrix}$$
Replace R_2 by $R_2 + 5R_3$

The equations $A\mathbf{x} = \mathbf{b}$ are consistent. Thus **b** is in the range of T.

5. Suppose that the row echelon form of the matrix A is R. Can $A\mathbf{x} = \mathbf{b}$ be solved for every $\mathbf{b} \in \mathbf{R}^4$? Explain why or why not. Suppose that the row echelon form of the matrix B is S. Is the solution of $B\mathbf{x} = \mathbf{0}$ unique? Explain why or why not. For the same B, let $T(\mathbf{x}) = B\mathbf{x}$. Is the range of T equal to \mathbf{R}^6 ? Explain why or why not. For "*" representing any number, the matrices are given by

									Γ	1	*	*	*]			[1]	1
	1	*	*	*	*	*				0	2	*	*				0	
D	0	0	2	*	*	*		C		0	0	3	*				0	
$\pi =$	0	0	0	0	3	*	,	5 =	=	0	0	0	4	,	C	; =	0	
R =	0	0	0	0	0	4				0	0	0	0				0	
	-					-				0	0	0	* * 4 0 0				$\begin{bmatrix} 1\\0\\0\\0\\0\\0\end{bmatrix}$	

 $A\mathbf{x} = \mathbf{b}$ can be solved for every $\mathbf{b} \in \mathbf{R}^4$? because its REF R has a pivot in every row.

The solution of $B\mathbf{x} = \mathbf{0}$, namely $\mathbf{x} = \mathbf{0}$, is unique since there are no free variables.

The range of $T(\mathbf{x}) = B\mathbf{x}$ does not equal \mathbf{R}^6 . For some choices of $\mathbf{c} \in \mathbf{R}^6$, the row reductions $(B|c) \to (S|\tilde{\mathbf{c}})$ may not be consistent. The reduction may result in a $\tilde{\mathbf{c}}$ that is not zero in the fifth row, so there is no \mathbf{x} such that $T(\mathbf{x}) = \mathbf{c}$ for this \mathbf{c} .

6. Find the general flow pattern of the network shown in the figure. Assuming that all the flows are nonnegative, what is the largest possible value for x_4 ?

Let x_1, \ldots, x_4 be the flow rates (say in cars per minute) in the indicated directions of the segments. At each junction, there is a balance of cars entering the intersection and cars leaving the intersection each minute. Writing the balance equations,

(A)	$90 = x_1 + x_2 + x_3$
(B)	$x_1 = x_4 + 50$
(C)	$x_2 + x_3 + x_4 = 40$

Moving variables to the left and constants to the right, we write the augmented matrix of the resulting system. Then we perform row operations.

$$\begin{pmatrix} -1 & -1 & -1 & 0 & -90\\ 1 & 0 & 0 & -1 & 50\\ 0 & 1 & 1 & 1 & 40 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & 90\\ 0 & -1 & -1 & -1 & -40\\ 0 & 1 & 1 & 1 & 40 \end{pmatrix}$$
Replace R_1 by $-R_1$
Replace R_2 by $R_2 + R_1$
 $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & 90\\ 0 & 1 & 1 & 1 & 40\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ Replace R_2 by $-R_2$
Replace R_3 by $R_3 + R_3$

Thus x_3 and x_4 are free and can take any values. Solving we find

$$x_2 = 40 - x_3 - x_4$$

$$x_1 = 90 - x_2 - x_3 = 90 - (40 - x_3 - x_4) - x_3 = 50 + x_4.$$

If all flow is in the direction of arrows, then $x_i \ge 0$. But this implies

$$x_2 = 40 - x_3 - x_4 \ge 0$$

which implies

$$x_4 \le 40 - x_3 \le 40$$

because $x_3 \ge 0$. This is the maximum possible x_4 . In fact, taking $x_3 = 0$ and $x_4 = 40$ yields $x_1 = 90$ and $x_2 = 0$ we see that a valid flow takes the maximal x_4 value of 40.