
Math 2270 § 2.
Treibergs −−σιι

Fourth Midterm Name: Solutions
April 7 2021

1. Find all eigenvalues and eigenvectors. Show your work to get credit.

A =

 0 2 3
0 −1 0
3 6 8


By expanding the second row the characteristic polynomial is

det(A− λI) =

∣∣∣∣∣∣
−λ 2 3
0 −1− λ 0
3 6 8− λ

∣∣∣∣∣∣ = (−1− λ)

∣∣∣∣ −λ 3
3 8− λ

∣∣∣∣
= −(λ+ 1) [(−λ)(8− λ)− 3 · 3] = −(λ+ 1)

[
λ2 − 8λ− 9

]
= −(λ+ 1)(λ− 9)(λ+ 1) = −(λ+ 1)2(λ− 9).

Thus the eigenvalues are λ1 = −1 with algebraic multiplicity two and λ2 = 9 with algebraic
multiplicity one. We may find the eigenvectors by inspection

[0 0] = (A− λ1I)[v1 v2] =

 1 2 3
0 0 0
3 6 9

 −2 −3
1 0
0 1


0 = (A− λ2I)v3 =

 −9 2 3
0 −10 0
3 6 −1

 1
0
3


All eigenvectors are the nonzero vectors in eigenspaces

E1 = span


 −2

1
0

 ,
 −3

0
1

 , E2 = span


 1

0
3

 .

2. Find a matrix that diagonalizes A. Show that your matrix does the job.

A =

[
7 −3
−1 5

]
First find eigenvalues and eigenvectors. The characteristic polynomial is

det(A− λI) =

∣∣∣∣ 7− λ −3
−1 5− λ

∣∣∣∣ = (7− λ)(5− λ)− (−3)(−1)

= λ2 − 12λ+ 32 = (λ− 4)(λ− 8).

Hence the eigenvalues are λ1 = 4 and λ2 = 8. We may find the eigenvectors by inspection

0 = (A− λ1I)v1 =

[
3 −3
−1 1

] [
1
1

]
0 = (A− λ2)v2 =

[
−1 −3
−1 −3

] [
−3
1

]
.

The diagonalizing matrix is made of eigenvectors and the diagonal matrix has eigenvalues
on the diagonal.

P =

[
1 −3
1 1

]
, D =

[
4 0
0 8

]
.
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The easiest way to check is to compute

AP =

[
7 −3
−1 5

] [
1 −3
1 1

]
=

[
4 −24
4 8

]
=

[
1 −3
1 1

] [
4 0
0 8

]
= PD.

3. Let H = span(S) be a subspace of R4. Show that b1 is in H. Find additional vectors
b2,b3, . . . (as many as needed) so that B = {b1,b2, . . .} is a basis for H. Explain.

S = {v1,v2,v3,v4} =




1
1
1
1

 ,


1
2
1
2

 ,


2
1
2
1

 ,


1
1
2
2


 , b1 =


4
6
4
6


Form the augmented matrix whose columns are S vectors along with b1 and reduce.

[A |b1] =


1 1 2 1 4
1 2 1 1 6
1 1 2 2 4
1 2 1 2 6

→


1 1 2 1 4
0 1 −1 0 2
0 0 0 1 0
0 1 −1 1 2

→


1 1 2 1 4
0 1 −1 0 2
0 0 0 1 0
0 0 0 0 0


The resulting system is consistent, so b1 ∈ H. Note that there are three pivots so dimH = 3
and a basis for H is {v1,v2,v4}. Also the last column is a linear combination of the first
two, b1 = 2v1 + 2v2 so we can take b1, one of v1, v2 and v4 as a basis, say

A basis for H is {b1,b2,b3} =




4
6
4
6

 ,


1
1
1
1

 ,


1
1
2
2


 .

All three vectors are in H. The b1 and b2 are not multiples of each other, and b3 is not a
linear combination of b1 and b2 because the first and third components of b3 are unequal.
Hence the set is a linearly independent set of three vectors in a three dimensional subspace
H, thus is also spanning, hence a basis.

4. (a) Let B = {b1,b2} and C = {c1, c2} be two bases of a vector space V . Suppose that
b1 = −2c1 + 3c2 and b2 = c1 − 4c2. Find the change of coordinates matrix matrix
from B to C. Find [x]C for x = 6b1 + 5b2.

We are given coordinates of the basic vectors and x

[b1]C =

[
−2
3

]
, [b2]C =

[
1
−4

]
, [x]B =

[
6
5

]
.

The change of coordinates matrix is formed by columns that are coordinates

P
C←B

=

[
[b1]C [b2]C

]
=

[
−2 1
3 −4

]
Applying the change of coordinates matrix we find

[x]C = P
C←B

[x]B =

[
−2 1
3 −4

] [
6
5

]
=

[
−7
−2

]
.

(b) Find a basis for the row space of A.

A =

 1 2 2 1
2 4 2 1
3 6 4 2


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Row reduce 1 2 2 1
2 4 2 1
3 6 4 2

→
 1 2 2 1

0 0 −2 −1
0 0 −2 −1

→
 1 2 2 1

0 0 −2 −1
0 0 0 0


Thus a basis for Row(A) is{[

1 2 2 1
]
,
[

0 0 −2 −1
]}
.

5. Consider two bases of R3.

B =

{[
1
1

]
,

[
1
0

]}
, C =

{[
1
2

]
,

[
0
1

]}
, w =

[
4
4

]
(a) Find [w]B and [w]C.

(b) Find the change of basis matrix P
C←B .

(c) Check that your P
C←B changes [w]B to [w]C.

Let

PB =

[
1 1
1 0

]
, PC =

[
1 0
2 1

]
.

We have PB[w]B = w so

[w]B = (PB)
−1

w =
1

1 · 0− 1 · 1

[
0 −1
−1 1

] [
4
4

]
=

[
4
0

]
,

[w]C = (PC)
−1

w =
1

1 · 1− 0 · 2

[
1 0
−2 1

] [
4
4

]
=

[
4
−4

]
Since P

C←B = (PC)
−1PB we reduce the augmented matrix

[PC |PB] =

[
1 0 1 1
2 1 1 0

]
→
[

1 0 1 1
0 1 −1 −2

]
=
[
I | P

C←B

]
.

We find that the P
C←B does change [w]B to [w]C , namely,

P
C←B

[w]B =

[
1 1
−1 −2

] [
4
0

]
=

[
4
−4

]
= [w]C .

6. Determine whether the following statements are true or false. If true, give a short explana-
tion. If false, find matrices for which the statement fails.

(a) Statement.
(
4 2
1 3

)
is similar to

(
5 0
0 2

)
.

True. The characteristic polynomial roots are the eigenvalues 5 and 2.

pA(λ) =

∣∣∣∣ 4− λ 2
1 3− λ

∣∣∣∣ = (4− λ)(3− λ)− 2 = λ2 − 7λ+ 10 = (λ− 5)(λ− 2)

Since the all eigenvalues are distinct, the matrix is diagonalizable, that is

[
4 2
1 3

]
is

similar to the matrix with eigenvalues as diagonals

[
5 0
0 2

]
.
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(b) Statement. F = {f : R→ R}, the vector space of functions of the real numbers is
finite dimensional.

False. The vector space of functions F contains the space of all polynomials P. Any
finite set S ⊂ F with n elements cannot span F because if it could, P ⊂ span(S). But
the subspace H = span{1, t, t2, . . . , tn} ⊂ P of dimension n+1 cannot satisfy H ⊂ P ⊂
span(S) because it does not satisfy the dimension inequality dimH ≤ dim span(S) ≤ n
which would have to be true for finite dimensional subspaces since H ⊂ span(S).

(c) Statement. Suppose that pA(λ) = 8λ2 + 6λ3 + λ4 is the characteristic polynomial
of A. Then A is invertible.

False. pA(0) = 0 says zero is an eigenvalue so A = A − 0I is singular. pA(λ) =
λ2(λ+ 4)(λ+ 2) is the characteristic polynomial of the singular matrix

A =


−4 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 0

 .
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