1. Find all eigenvalues and eigenvectors. Show your work to get credit.

$$
A=\left[\begin{array}{ccc}
0 & 2 & 3 \\
0 & -1 & 0 \\
3 & 6 & 8
\end{array}\right]
$$

By expanding the second row the characteristic polynomial is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{ccc}
-\lambda & 2 & 3 \\
0 & -1-\lambda & 0 \\
3 & 6 & 8-\lambda
\end{array}\right|=(-1-\lambda)\left|\begin{array}{cc}
-\lambda & 3 \\
3 & 8-\lambda
\end{array}\right| \\
& =-(\lambda+1)[(-\lambda)(8-\lambda)-3 \cdot 3]=-(\lambda+1)\left[\lambda^{2}-8 \lambda-9\right] \\
& =-(\lambda+1)(\lambda-9)(\lambda+1)=-(\lambda+1)^{2}(\lambda-9)
\end{aligned}
$$

Thus the eigenvalues are $\lambda_{1}=-1$ with algebraic multiplicity two and $\lambda_{2}=9$ with algebraic multiplicity one. We may find the eigenvectors by inspection

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathbf{0} & \mathbf{0}
\end{array}\right]=\left(A-\lambda_{1} I\right)\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0 \\
3 & 6 & 9
\end{array}\right]\left[\begin{array}{cc}
-2 & -3 \\
1 & 0 \\
0 & 1
\end{array}\right]} \\
& \\
& \mathbf{0}=\left(A-\lambda_{2} I\right) \mathbf{v}_{3}=\left[\begin{array}{ccc}
-9 & 2 & 3 \\
0 & -10 & 0 \\
3 & 6 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right]
\end{aligned}
$$

All eigenvectors are the nonzero vectors in eigenspaces

$$
\mathcal{E}_{1}=\operatorname{span}\left\{\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]\right\}, \quad \mathcal{E}_{2}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right]\right\}
$$

2. Find a matrix that diagonalizes A. Show that your matrix does the job.

$$
A=\left[\begin{array}{cc}
7 & -3 \\
-1 & 5
\end{array}\right]
$$

First find eigenvalues and eigenvectors. The characteristic polynomial is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cc}
7-\lambda & -3 \\
-1 & 5-\lambda
\end{array}\right|=(7-\lambda)(5-\lambda)-(-3)(-1) \\
& =\lambda^{2}-12 \lambda+32=(\lambda-4)(\lambda-8)
\end{aligned}
$$

Hence the eigenvalues are $\lambda_{1}=4$ and $\lambda_{2}=8$. We may find the eigenvectors by inspection

$$
\begin{aligned}
& \mathbf{0}=\left(A-\lambda_{1} I\right) \mathbf{v}_{1}=\left[\begin{array}{cc}
3 & -3 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \mathbf{0}=\left(A-\lambda_{2}\right) \mathbf{v}_{2}=\left[\begin{array}{ll}
-1 & -3 \\
-1 & -3
\end{array}\right]\left[\begin{array}{c}
-3 \\
1
\end{array}\right] .
\end{aligned}
$$

The diagonalizing matrix is made of eigenvectors and the diagonal matrix has eigenvalues on the diagonal.

$$
P=\left[\begin{array}{cc}
1 & -3 \\
1 & 1
\end{array}\right], \quad D=\left[\begin{array}{ll}
4 & 0 \\
0 & 8
\end{array}\right]
$$

The easiest way to check is to compute

$$
A P=\left[\begin{array}{cc}
7 & -3 \\
-1 & 5
\end{array}\right]\left[\begin{array}{cc}
1 & -3 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
4 & -24 \\
4 & 8
\end{array}\right]=\left[\begin{array}{cc}
1 & -3 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 8
\end{array}\right]=P D
$$

3. Let $H=\operatorname{span}(S)$ be a subspace of \mathbf{R}^{4}. Show that \mathbf{b}_{1} is in H. Find additional vectors $\mathbf{b}_{2}, \mathbf{b}_{3}, \ldots$ (as many as needed) so that $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots\right\}$ is a basis for H. Explain.

$$
S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2 \\
2
\end{array}\right]\right\}, \quad \mathbf{b}_{1}=\left[\begin{array}{l}
4 \\
6 \\
4 \\
6
\end{array}\right]
$$

Form the augmented matrix whose columns are S vectors along with \mathbf{b}_{1} and reduce.

$$
\left[A \mid \mathbf{b}_{1}\right]=\left[\begin{array}{ccccc}
1 & 1 & 2 & 1 & 4 \\
1 & 2 & 1 & 1 & 6 \\
1 & 1 & 2 & 2 & 4 \\
1 & 2 & 1 & 2 & 6
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 1 & 2 & 1 & 4 \\
0 & 1 & -1 & 0 & 2 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 1 & 2 & 1 & 4 \\
0 & 1 & -1 & 0 & 2 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The resulting system is consistent, so $\mathbf{b}_{1} \in H$. Note that there are three pivots so $\operatorname{dim} H=3$ and a basis for H is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$. Also the last column is a linear combination of the first two, $\mathbf{b}_{1}=2 \mathbf{v}_{1}+2 \mathbf{v}_{2}$ so we can take \mathbf{b}_{1}, one of $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{4} as a basis, say

$$
\text { A basis for } H \text { is }\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}=\left\{\left[\begin{array}{l}
4 \\
6 \\
4 \\
6
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2 \\
2
\end{array}\right]\right\}
$$

All three vectors are in H. The \mathbf{b}_{1} and \mathbf{b}_{2} are not multiples of each other, and \mathbf{b}_{3} is not a linear combination of \mathbf{b}_{1} and \mathbf{b}_{2} because the first and third components of \mathbf{b}_{3} are unequal. Hence the set is a linearly independent set of three vectors in a three dimensional subspace H, thus is also spanning, hence a basis.
4. (a) Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ be two bases of a vector space V. Suppose that $\mathbf{b}_{1}=-2 \mathbf{c}_{1}+3 \mathbf{c}_{2}$ and $\mathbf{b}_{2}=\mathbf{c}_{1}-4 \mathbf{c}_{2}$. Find the change of coordinates matrix matrix from \mathcal{B} to \mathcal{C}. Find $[\mathbf{x}]_{\mathcal{C}}$ for $\mathbf{x}=6 \mathbf{b}_{1}+5 \mathbf{b}_{2}$.
We are given coordinates of the basic vectors and \mathbf{x}

$$
\left[\mathbf{b}_{1}\right]_{\mathcal{C}}=\left[\begin{array}{c}
-2 \\
3
\end{array}\right], \quad\left[\mathbf{b}_{2}\right]_{\mathcal{C}}=\left[\begin{array}{c}
1 \\
-4
\end{array}\right], \quad[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}
6 \\
5
\end{array}\right]
$$

The change of coordinates matrix is formed by columns that are coordinates

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\left[\mathbf{b}_{1}\right]_{\mathcal{C}}\left[\mathbf{b}_{2}\right]_{\mathcal{C}}\right]=\left[\begin{array}{cc}
-2 & 1 \\
3 & -4
\end{array}\right]
$$

Applying the change of coordinates matrix we find

$$
[\mathbf{x}]_{\mathcal{C}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{cc}
-2 & 1 \\
3 & -4
\end{array}\right]\left[\begin{array}{l}
6 \\
5
\end{array}\right]=\left[\begin{array}{l}
-7 \\
-2
\end{array}\right]
$$

(b) Find a basis for the row space of A.

$$
A=\left[\begin{array}{llll}
1 & 2 & 2 & 1 \\
2 & 4 & 2 & 1 \\
3 & 6 & 4 & 2
\end{array}\right]
$$

Row reduce

$$
\left[\begin{array}{cccc}
1 & 2 & 2 & 1 \\
2 & 4 & 2 & 1 \\
3 & 6 & 4 & 2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 2 & 1 \\
0 & 0 & -2 & -1 \\
0 & 0 & -2 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 2 & 1 \\
0 & 0 & -2 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus a basis for $\operatorname{Row}(A)$ is

$$
\left\{\left[\begin{array}{llll}
1 & 2 & 2 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & -2 & -1
\end{array}\right]\right\} .
$$

5. Consider two bases of \mathbf{R}^{3}.

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}, \quad C=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}, \quad \mathbf{w}=\left[\begin{array}{l}
4 \\
4
\end{array}\right]
$$

(a) Find $[\mathbf{w}]_{\mathcal{B}}$ and $[\mathbf{w}]_{\mathcal{C}}$.
(b) Find the change of basis matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\stackrel{P}{\leftarrow}} \stackrel{\text {. }}{P}$
(c) Check that your $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ changes $[\mathbf{w}]_{\mathcal{B}}$ to $[\mathbf{w}]_{\mathcal{C}}$.

Let

$$
P_{\mathcal{B}}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right], \quad P_{\mathcal{C}}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

We have $P_{\mathcal{B}}[\mathbf{w}]_{\mathcal{B}}=\mathbf{w}$ so

$$
\begin{aligned}
& {[\mathbf{w}]_{\mathcal{B}}=\left(P_{\mathcal{B}}\right)^{-1} \mathbf{w}=\frac{1}{1 \cdot 0-1 \cdot 1}\left[\begin{array}{cc}
0 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
4
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right]} \\
& {[\mathbf{w}]_{\mathcal{C}}=\left(P_{\mathcal{C}}\right)^{-1} \mathbf{w}=\frac{1}{1 \cdot 1-0 \cdot 2}\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
4
\end{array}\right]=\left[\begin{array}{c}
4 \\
-4
\end{array}\right]}
\end{aligned}
$$

Since $\begin{gathered}P \\ \mathcal{C} \leftarrow \mathcal{B}\end{gathered}=\left(P_{\mathcal{C}}\right)^{-1} P_{\mathcal{B}}$ we reduce the augmented matrix

$$
\left[P_{\mathcal{C}} \mid P_{\mathcal{B}}\right]=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
2 & 1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & -2
\end{array}\right]=\left[\begin{array}{llc}
I & \mid & P \\
& \mathcal{C} \leftarrow \mathcal{B}
\end{array}\right]
$$

We find that the $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ does change $[\mathbf{w}]_{\mathcal{B}}$ to $[\mathbf{w}]_{\mathcal{C}}$, namely,

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[\mathbf{w}]_{\mathcal{B}}=\left[\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
4 \\
0
\end{array}\right]=\left[\begin{array}{c}
4 \\
-4
\end{array}\right]=[\mathbf{w}]_{\mathcal{C}}
$$

6. Determine whether the following statements are true or false. If true, give a short explanation. If false, find matrices for which the statement fails.
(a) Statement. $\left(\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right)$ is similar to $\left(\begin{array}{ll}5 & 0 \\ 0 & 2\end{array}\right)$.

True. The characteristic polynomial roots are the eigenvalues 5 and 2.

$$
p_{A}(\lambda)=\left|\begin{array}{cc}
4-\lambda & 2 \\
1 & 3-\lambda
\end{array}\right|=(4-\lambda)(3-\lambda)-2=\lambda^{2}-7 \lambda+10=(\lambda-5)(\lambda-2)
$$

Since the all eigenvalues are distinct, the matrix is diagonalizable, that is $\left[\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right]$ is similar to the matrix with eigenvalues as diagonals $\left[\begin{array}{ll}5 & 0 \\ 0 & 2\end{array}\right]$.
(b) Statement. $\mathcal{F}=\{f: \mathbf{R} \rightarrow \mathbf{R}\}$, the vector space of functions of the real numbers is finite dimensional.
FALSE. The vector space of functions \mathcal{F} contains the space of all polynomials \mathbb{P}. Any finite set $S \subset \mathcal{F}$ with n elements cannot span \mathcal{F} because if it could, $\mathbb{P} \subset \operatorname{span}(S)$. But the subspace $H=\operatorname{span}\left\{1, t, t^{2}, \ldots, t^{n}\right\} \subset \mathbb{P}$ of dimension $n+1$ cannot satisfy $H \subset \mathbb{P} \subset$ $\operatorname{span}(S)$ because it does not satisfy the dimension inequality $\operatorname{dim} H \leq \operatorname{dim} \operatorname{span}(S) \leq n$ which would have to be true for finite dimensional subspaces since $H \subset \operatorname{span}(S)$.
(c) Statement. Suppose that $p_{A}(\lambda)=8 \lambda^{2}+6 \lambda^{3}+\lambda^{4}$ is the characteristic polynomial of A. Then A is invertible.
FALSE. $p_{A}(0)=0$ says zero is an eigenvalue so $A=A-0 I$ is singular. $p_{A}(\lambda)=$ $\lambda^{2}(\lambda+4)(\lambda+2)$ is the characteristic polynomial of the singular matrix

$$
A=\left[\begin{array}{cccc}
-4 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

