Math 2270 § 2.	Fourth Midterm	Name:	Solutions
Treibergs $a t$		April 7 2021	

1. Find all eigenvalues and eigenvectors. Show your work to get credit.

$$A = \begin{bmatrix} 0 & 2 & 3 \\ 0 & -1 & 0 \\ 3 & 6 & 8 \end{bmatrix}$$

By expanding the second row the characteristic polynomial is

.

$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & 2 & 3\\ 0 & -1 - \lambda & 0\\ 3 & 6 & 8 - \lambda \end{vmatrix} = (-1 - \lambda) \begin{vmatrix} -\lambda & 3\\ 3 & 8 - \lambda \end{vmatrix}$$
$$= -(\lambda + 1) [(-\lambda)(8 - \lambda) - 3 \cdot 3] = -(\lambda + 1) [\lambda^2 - 8\lambda - 9]$$
$$= -(\lambda + 1)(\lambda - 9)(\lambda + 1) = -(\lambda + 1)^2(\lambda - 9).$$

Thus the eigenvalues are $\lambda_1 = -1$ with algebraic multiplicity two and $\lambda_2 = 9$ with algebraic multiplicity one. We may find the eigenvectors by inspection

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} \end{bmatrix} = (A - \lambda_1 I) \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} -2 & -3 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\mathbf{0} = (A - \lambda_2 I) \mathbf{v}_3 = \begin{bmatrix} -9 & 2 & 3 \\ 0 & -10 & 0 \\ 3 & 6 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$

All eigenvectors are the nonzero vectors in eigenspaces

$$\mathcal{E}_1 = \operatorname{span}\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\1 \end{bmatrix} \right\}, \qquad \mathcal{E}_2 = \operatorname{span}\left\{ \begin{bmatrix} 1\\0\\3 \end{bmatrix} \right\}.$$

2. Find a matrix that diagonalizes A. Show that your matrix does the job.

$$A = \left[\begin{array}{rr} 7 & -3 \\ -1 & 5 \end{array} \right]$$

First find eigenvalues and eigenvectors. The characteristic polynomial is

$$\det(A - \lambda I) = \begin{vmatrix} 7 - \lambda & -3 \\ -1 & 5 - \lambda \end{vmatrix} = (7 - \lambda)(5 - \lambda) - (-3)(-1)$$
$$= \lambda^2 - 12\lambda + 32 = (\lambda - 4)(\lambda - 8).$$

Hence the eigenvalues are $\lambda_1 = 4$ and $\lambda_2 = 8$. We may find the eigenvectors by inspection

$$\mathbf{0} = (A - \lambda_1 I)\mathbf{v}_1 = \begin{bmatrix} 3 & -3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\mathbf{0} = (A - \lambda_2)\mathbf{v}_2 = \begin{bmatrix} -1 & -3 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} -3 \\ 1 \end{bmatrix}.$$

The diagonalizing matrix is made of eigenvectors and the diagonal matrix has eigenvalues on the diagonal.

$$P = \begin{bmatrix} 1 & -3\\ 1 & 1 \end{bmatrix}, \qquad D = \begin{bmatrix} 4 & 0\\ 0 & 8 \end{bmatrix}.$$

The easiest way to check is to compute

$$AP = \begin{bmatrix} 7 & -3 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -24 \\ 4 & 8 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix} = PD$$

3. Let H = span(S) be a subspace of \mathbb{R}^4 . Show that \mathbf{b}_1 is in H. Find additional vectors $\mathbf{b}_2, \mathbf{b}_3, \ldots$ (as many as needed) so that $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \ldots}$ is a basis for H. Explain.

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\} = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2\\2 \end{bmatrix} \right\}, \qquad \mathbf{b}_1 = \begin{bmatrix} 4\\6\\4\\6 \end{bmatrix}$$

Form the augmented matrix whose columns are S vectors along with \mathbf{b}_1 and reduce.

$$[A | \mathbf{b}_1] = \begin{bmatrix} 1 & 1 & 2 & 1 & 4 \\ 1 & 2 & 1 & 1 & 6 \\ 1 & 1 & 2 & 2 & 4 \\ 1 & 2 & 1 & 2 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 1 & 4 \\ 0 & 1 & -1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 1 & 4 \\ 0 & 1 & -1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The resulting system is consistent, so $\mathbf{b}_1 \in H$. Note that there are three pivots so dim H = 3 and a basis for H is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$. Also the last column is a linear combination of the first two, $\mathbf{b}_1 = 2\mathbf{v}_1 + 2\mathbf{v}_2$ so we can take \mathbf{b}_1 , one of \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_4 as a basis, say

A basis for *H* is
$$\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\} = \left\{ \begin{bmatrix} 4\\6\\4\\6 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2\\2 \end{bmatrix} \right\}.$$

All three vectors are in H. The \mathbf{b}_1 and \mathbf{b}_2 are not multiples of each other, and \mathbf{b}_3 is not a linear combination of \mathbf{b}_1 and \mathbf{b}_2 because the first and third components of \mathbf{b}_3 are unequal. Hence the set is a linearly independent set of three vectors in a three dimensional subspace H, thus is also spanning, hence a basis.

4. (a) Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$ and $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2}$ be two bases of a vector space V. Suppose that $\mathbf{b}_1 = -2\mathbf{c}_1 + 3\mathbf{c}_2$ and $\mathbf{b}_2 = \mathbf{c}_1 - 4\mathbf{c}_2$. Find the change of coordinates matrix matrix from \mathcal{B} to \mathcal{C} . Find $[\mathbf{x}]_{\mathcal{C}}$ for $\mathbf{x} = 6\mathbf{b}_1 + 5\mathbf{b}_2$.

We are given coordinates of the basic vectors and ${\bf x}$

$$[\mathbf{b}_1]_{\mathcal{C}} = \begin{bmatrix} -2\\ 3 \end{bmatrix}, \qquad [\mathbf{b}_2]_{\mathcal{C}} = \begin{bmatrix} 1\\ -4 \end{bmatrix}, \qquad [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 6\\ 5 \end{bmatrix}.$$

The change of coordinates matrix is formed by columns that are coordinates

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = \left[[\mathbf{b}_1]_{\mathcal{C}} [\mathbf{b}_2]_{\mathcal{C}} \right] = \left[\begin{array}{cc} -2 & 1\\ 3 & -4 \end{array} \right]$$

Applying the change of coordinates matrix we find

$$[\mathbf{x}]_{\mathcal{C}} = \Pr_{\mathcal{C} \leftarrow \mathcal{B}} [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 & 1 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \end{bmatrix} = \begin{bmatrix} -7 \\ -2 \end{bmatrix}.$$

(b) Find a basis for the row space of A.

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 4 & 2 & 1 \\ 3 & 6 & 4 & 2 \end{bmatrix}$$

Row reduce

$$\begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 4 & 2 & 1 \\ 3 & 6 & 4 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & -2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus a basis for $\operatorname{Row}(A)$ is

$$\left\{ \begin{bmatrix} 1 & 2 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -2 & -1 \end{bmatrix} \right\}.$$

5. Consider two bases of \mathbb{R}^3 .

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix} \right\}, \qquad C = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}, \qquad \mathbf{w} = \begin{bmatrix} 4\\4 \end{bmatrix}$$

- (a) Find $[\mathbf{w}]_{\mathcal{B}}$ and $[\mathbf{w}]_{\mathcal{C}}$.
- (b) Find the change of basis matrix $\underset{C \leftarrow \mathcal{B}}{P}$.
- (c) Check that your $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$ changes $[\mathbf{w}]_{\mathcal{B}}$ to $[\mathbf{w}]_{\mathcal{C}}$.

Let

$$P_{\mathcal{B}} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \qquad P_{\mathcal{C}} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}.$$

We have $P_{\mathcal{B}}[\mathbf{w}]_{\mathcal{B}} = \mathbf{w}$ so

$$[\mathbf{w}]_{\mathcal{B}} = (P_{\mathcal{B}})^{-1} \mathbf{w} = \frac{1}{1 \cdot 0 - 1 \cdot 1} \begin{bmatrix} 0 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \end{bmatrix},$$
$$[\mathbf{w}]_{\mathcal{C}} = (P_{\mathcal{C}})^{-1} \mathbf{w} = \frac{1}{1 \cdot 1 - 0 \cdot 2} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \end{bmatrix}$$

Since $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}=(P_{\mathcal{C}})^{-1}P_{\mathcal{B}}$ we reduce the augmented matrix

$$[P_{\mathcal{C}}|P_{\mathcal{B}}] = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -2 \end{bmatrix} = \begin{bmatrix} I & | P_{\mathcal{C} \leftarrow \mathcal{B}} \end{bmatrix}.$$

We find that the $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$ does change $[\mathbf{w}]_{\mathcal{B}}$ to $[\mathbf{w}]_{\mathcal{C}}$, namely,

$$\underset{\mathcal{C}\leftarrow\mathcal{B}}{P} [\mathbf{w}]_{\mathcal{B}} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \end{bmatrix} = [\mathbf{w}]_{\mathcal{C}}.$$

- 6. Determine whether the following statements are true or false. If true, give a short explanation. If false, find matrices for which the statement fails.
 - (a) STATEMENT. $\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$ is similar to $\begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}$. TRUE. The characteristic polynomial roots are the eigenvalues 5 and 2.

$$p_A(\lambda) = \begin{vmatrix} 4 - \lambda & 2\\ 1 & 3 - \lambda \end{vmatrix} = (4 - \lambda)(3 - \lambda) - 2 = \lambda^2 - 7\lambda + 10 = (\lambda - 5)(\lambda - 2)$$

Since the all eigenvalues are distinct, the matrix is diagonalizable, that is $\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$ is similar to the matrix with eigenvalues as diagonals $\begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}$.

(b) STATEMENT. $\mathcal{F} = \{f : \mathbf{R} \to \mathbf{R}\}$, the vector space of functions of the real numbers is finite dimensional.

FALSE. The vector space of functions \mathcal{F} contains the space of all polynomials \mathbb{P} . Any finite set $S \subset \mathcal{F}$ with n elements cannot span \mathcal{F} because if it could, $\mathbb{P} \subset \text{span}(S)$. But the subspace $H = \text{span}\{1, t, t^2, \ldots, t^n\} \subset \mathbb{P}$ of dimension n+1 cannot satisfy $H \subset \mathbb{P} \subset$ span(S) because it does not satisfy the dimension inequality dim $H \leq \text{dim span}(S) \leq n$ which would have to be true for finite dimensional subspaces since $H \subset \text{span}(S)$.

(c) STATEMENT. Suppose that $p_A(\lambda) = 8\lambda^2 + 6\lambda^3 + \lambda^4$ is the characteristic polynomial of A. Then A is invertible.

FALSE. $p_A(0) = 0$ says zero is an eigenvalue so A = A - 0I is singular. $p_A(\lambda) = \lambda^2(\lambda + 4)(\lambda + 2)$ is the characteristic polynomial of the singular matrix

$$A = \begin{bmatrix} -4 & 0 & 0 & 0\\ 0 & -2 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}.$$