\qquad Solutions

1. Find the inverse matrix A^{-1} where

$$
A=\left[\begin{array}{lll}
2 & 2 & 4 \\
1 & 2 & 3 \\
2 & 3 & 4
\end{array}\right]
$$

Augment the matrix by the identity and do row reductions.

$$
\begin{aligned}
{\left[\begin{array}{llllll}
2 & 2 & 4 & 1 & 0 & 0 \\
1 & 2 & 3 & 0 & 1 & 0 \\
2 & 3 & 4 & 0 & 0 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{llllll}
1 & 2 & 3 & 0 & 1 & 0 \\
2 & 2 & 4 & 1 & 0 & 0 \\
2 & 3 & 4 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 2 & 3 & 0 & 1 \\
0 \\
0 & -2 & -2 & 1 & -2 \\
0 \\
0 & -1 & -2 & 0 & -2 \\
1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 & 2 & -1 \\
0 & -2 & -2 & 1 & -2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 0 & -1 & 0 & -3 \\
0 & 1 & 2 & 0 & 2 \\
0 & 0 & 2 & 1 & 2 \\
-2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccccc}
1 & 0 & -1 & 0 & -3 & 2 \\
0 & 1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & \frac{1}{2} & 1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & \frac{1}{2} & -2 & 1 \\
0 & 1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & \frac{1}{2} & 1 & -1
\end{array}\right]
\end{aligned}
$$

So

$$
A^{-1}=\left[\begin{array}{ccc}
\frac{1}{2} & -2 & 1 \\
-1 & 0 & 1 \\
\frac{1}{2} & 1 & -1
\end{array}\right] \quad \text { check } \quad A A^{-1}=\left[\begin{array}{ccc}
2 & 2 & 4 \\
1 & 2 & 3 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & -2 & 1 \\
-1 & 0 & 1 \\
\frac{1}{2} & 1 & -1
\end{array}\right]=I
$$

2. (a) Detemine whether each of the given matrices is invertible. Use as few calculations as possible. Justify your answer.

$$
A=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 2 & 3 \\
0 & 4 & 5 & 6 \\
7 & 8 & 9 & 10
\end{array}\right] \sim\left[\begin{array}{cccc}
7 & 8 & 9 & 10 \\
0 & 4 & 5 & 6 \\
0 & 0 & 2 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Invertible. By swapping rows, A is row equivalent to a matrix which has $n=4$ pivots, hence is row equivalent to I.

$$
B=\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 2 & 2 & 2 \\
2 & 4 & 4 & 4 \\
2 & 2 & 3 & 4
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 \\
2 & 2 & 3 & 4
\end{array}\right]
$$

Not Invertible. For example, the third row is double the second row. Hence row reduction yields a zero row and B is not row equivalent to the identitiy matrix.

$$
C=\left[\begin{array}{llll}
0 & 1 & 0 & 3 \\
4 & 5 & 2 & 7 \\
6 & 5 & 3 & 3 \\
8 & 0 & 4 & 0
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
1 \\
0 \\
-2 \\
0
\end{array}\right]
$$

Not Invertible. For example, the first column is double the third column. Thus, this \mathbf{x} satisfies $C \mathbf{x}=\mathbf{0}$ so is a nontrivial solution of the homogeneous equation.
(b) Let A be an $n \times n$ matrix. Without quoting Theorems 7 or 8, argue carefully why if A is row equivalent to an invertible matrix B then A is invertible.
We follow the argument of Theorem 7. To be row equivalent means that there is a sequence of row operations given by elementary matrices E_{1}, \ldots, E_{k} which reduce A to B

$$
E_{k} \cdot E_{k-1} \cdots E_{2} \cdot E_{1} \cdot A=B
$$

By premultiplying be their inverses we find

$$
A=E_{1}^{-1} \cdot E_{2}^{-1} \cdots E_{k-1}^{-1} \cdot E_{k}^{-1} \cdot B
$$

But all the matrices on the right are invertible because the E_{i}^{-1} are elementary matrices themselves. Thus A is the product of invertible matrices, thus is invertible.
3. Write a matrix equation that determines the loop currents. Using an inverse matrix solve for the currents in terms of R_{1}, R_{2} and V. Compute the effective resistance $R^{*}=V / I_{2}$ of the dotted box (resistors in parallel.)

Let I_{1} and I_{2} be loop currents. By Kerchhoff's Loop Law, the oriented sum of voltage drop going around each loop equals the oriented sum of voltage sources. The loop equations are

$$
\begin{array}{rll}
R_{1} I_{1}+R_{2}\left(I_{1}-I_{2}\right) & =\left(R_{1}+R_{2}\right) I_{1}-R_{2} I_{2} & =0 \\
R_{2}\left(I_{2}-I_{1}\right) & =-R_{2} I_{1}+R_{2} I_{2} & =V .
\end{array}
$$

Rewriting as a matrix equation,

$$
\left[\begin{array}{cc}
R_{1}+R_{2} & -R_{2} \\
-R_{2} & R_{2}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
V
\end{array}\right]
$$

Using the inverse matrix we find the solution

$$
\begin{aligned}
{\left[\begin{array}{c}
I_{1} \\
I_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
R_{1}+R_{2} & -R_{2} \\
-R_{2} & R_{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
V
\end{array}\right] \\
& =\frac{1}{\left(R_{1}+R_{2}\right) R_{2}-R_{2}^{2}}\left[\begin{array}{cc}
R_{2} & R_{2} \\
R_{2} & R_{1}+R_{2}
\end{array}\right]\left[\begin{array}{c}
0 \\
V
\end{array}\right] \\
& =\frac{V}{R_{1} R_{2}}\left[\begin{array}{c}
R_{2} \\
R_{1}+R_{2}
\end{array}\right]
\end{aligned}
$$

Thus the effective resistance of the dotted box is

$$
R^{*}=\frac{V}{I_{2}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

which, of course, is the resistance of a pair of resistors in parallel.
4. (a) Let $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ be a linear transformation given by $T(\mathbf{x})=A \mathbf{x}$. Is T one-to-one? Why or why not? Is T onto? Why or why not?

$$
A=\left[\begin{array}{llll}
2 & 2 & 1 & 1 \\
1 & 4 & 2 & 0 \\
9 & 6 & 3 & 5
\end{array}\right]
$$

Applying row operations,

$$
\left[\begin{array}{llll}
2 & 2 & 1 & 1 \\
1 & 4 & 2 & 0 \\
9 & 6 & 3 & 5
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 4 & 2 & 0 \\
2 & 2 & 1 & 1 \\
9 & 6 & 3 & 5
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 4 & 2 & 0 \\
0 & -6 & -3 & 1 \\
0 & -30 & -15 & 5
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 4 & 2 & 0 \\
0 & 6 & 3 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The map $T(\mathbf{x})=A \mathbf{x}$ is not one-to-one because there is a free variable for A. It is not onto because each row does not have a pivot.
(b) For this A, is $B=A^{T} A$ invertible? Explain. [Hint: Find an easy argument that doesn't involve long computations.]
We find a nonzero solution of $A \mathbf{x}=\mathbf{0}$ by setting the free variables equal to $x_{3}=1$, $x_{4}=3$ so $x_{2}=0$ and $x_{1}=-2$ or $\mathbf{x}=[-2,0,1,3]^{T} \neq \mathbf{0}$. It follows that

$$
B \mathbf{x}=A^{T} A \mathbf{x}=A^{T} \mathbf{0}=\mathbf{0}
$$

Thus B has a nontrivial solution of $B \mathbf{x}=\mathbf{0}$, so B is not invertible.
5. (a) Suppose that $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a linear transformation that first reflects points through the vertical x_{2} axis and then rotates points $\frac{\pi}{6}$ radians. Find the standard matrix of T. Hint: $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}, \quad \cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$.
The standard matrix is determined by what the transformation does to the basic vectors, namely, $T(\mathbf{x})=M \mathbf{x}$ where

$$
M=\left[\begin{array}{ll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right)
\end{array}\right], \quad \text { where } \quad \mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let R denote the reflection and S the rotation, so $T=S \circ R$. Applying to \mathbf{e}_{1} we see that

$$
\begin{gathered}
R\left(\mathbf{e}_{1}\right)=R\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \quad S\left(R\left(\mathbf{e}_{1}\right)\right)=S\left(\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-\frac{\sqrt{3}}{2} \\
-\frac{1}{2}
\end{array}\right] \\
R\left(\mathbf{e}_{2}\right)=R\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad S\left(R\left(\mathbf{e}_{2}\right)\right)=S\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{\sqrt{3}}{2}
\end{array}\right]
\end{gathered}
$$

Hence

$$
M=\left[\begin{array}{rr}
-\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]
$$

(b) Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a one-to-one linear transformation. Suppose that the vectors \mathbf{v}_{1}, $\mathbf{v}_{2}, \mathbf{v}_{3}$ in \mathbf{R}^{n} are linearly independent. Show that $T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right)$ and $T\left(\mathbf{v}_{3}\right)$ are linearly independent.
We show that the only linear combination which equals zero is the zero combination. Suppose there are x_{1}, x_{2} and x_{3} such that

$$
x_{1} T\left(\mathbf{v}_{1}\right)+x_{2} T\left(\mathbf{v}_{2}\right)+x_{3} T\left(\mathbf{v}_{3}\right)=\mathbf{0}
$$

By linearity (superposition),

$$
T\left(x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}\right)=\mathbf{0}
$$

But T is one-to-one linear transformation so $T(\mathbf{z})=\mathbf{0}$ implies $\mathbf{z}=\mathbf{0}$. Hence

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}=\mathbf{0}
$$

But we assumed that the vectors are linearly independent, thus

$$
x_{1}=x_{2}=x_{3}=0
$$

as desired.
6. Determine whether the following statements are true or false. If true, give a short explanation. If false, find matrices for which the statement fails.
(a) Statement. For 2×2 nonzero matrices A, B and C, if $A B=A C$ then $B=C$.

False. The matrix A cannot be cancelled unless it is invertible. Just about any matrices will provide a counterexample. For one, let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right) \neq C=\left(\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right), \quad A B=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=A C
$$

(b) Statement. If the 2×2 matrix A is invertible then it has only one inverse.

True. Suppose B and C are two inverses of A. Then $A B=B A=I$ and $A C=C A=$ I. Thus $A B=A C$ since both equal I. Pre-multiplying both sides by the inverse B we see from associativity of multiplication and inverse properties that

$$
B=I B=(B A) B=B(A B)=B(A C)=(B A) C=I C=C
$$

Thus any two inverses are equal so the inverse is unique.
(c) Statement. For 2×2 matrices A and B, their transposes satisfy $(A B)^{T}=A^{T} B^{T}$.

FALSE. The transpose of a product is the product of transposes in the opposite order. Again, we need two matrices such that $A B \neq B A$. One counterexample is given by

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right), A B=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)=(A B)^{T} \neq A^{T} B^{T}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right)
$$

