Math 2270 § 2.
Treibergs $a t$

First Midterm
February 3, 2021

1. Describe the solution of this system in parametric vector form. You must show all steps to receive full credit.

$$
\begin{aligned}
x_{2}+2 x_{3}+x_{4}+3 x_{5} & =3 \\
x_{1}+2 x_{2}+x_{3}+3 x_{5} & =5 \\
3 x_{1}+4 x_{2}-x_{3}-2 x_{4}+7 x_{5} & =5
\end{aligned}
$$

Write the augmented matrix and perform row operations.

$$
\begin{aligned}
\left(\begin{array}{cccccc}
0 & 1 & 2 & 1 & 3 & 3 \\
1 & 2 & 1 & 0 & 3 & 5 \\
3 & 4 & -1 & -2 & 7 & 5
\end{array}\right) & \rightarrow\left(\begin{array}{cccccc}
1 & 2 & 1 & 0 & 3 & 5 \\
0 & 1 & 2 & 1 & 3 & 3 \\
3 & 4 & -1 & -2 & 7 & 5
\end{array}\right) \quad \text { Swap } R_{1} \text { and } R_{2} \\
& \rightarrow\left(\begin{array}{cccccc}
1 & 2 & 1 & 0 & 3 & 5 \\
0 & 1 & 2 & 1 & 3 & 3 \\
0 & -2 & -4 & -2 & -2 & -10
\end{array}\right) \quad \text { Replace } R_{3} \text { by } R_{3}-3 R_{1} \\
& \rightarrow\left(\begin{array}{cccccc}
1 & 2 & 1 & 0 & 3 & 5 \\
0 & 1 & 2 & 1 & 3 & 3 \\
0 & 0 & 0 & 0 & 4 & -4
\end{array}\right) \quad \text { Replace } R_{3} \text { by } R_{3}+2 R_{2}
\end{aligned}
$$

x_{3} and x_{4} are free variables and can be set to any real value. Solving we find

$$
\begin{aligned}
4 x_{5} & =-4 \quad \text { so } x_{5}=-1 \\
x_{2} & =3-2 x_{3}-x_{4}-3 x_{5}=6-2 x_{3}-x_{4} \\
x_{1} & =5-2 x_{2}-x_{3}-3 x_{5}=5-2\left(6-2 x_{3}-x_{4}\right)-x_{3}+3=-4+3 x_{3}+2 x_{4} .
\end{aligned}
$$

Thus the set of solutions is

$$
\mathcal{S}=\left\{\left[\begin{array}{c}
-4+3 x_{3}+2 x_{4} \\
6-2 x_{3}-x_{4} \\
x_{3} \\
x_{4} \\
-1
\end{array}\right]: \text { where } x_{3} \text { and } x_{4} \text { are any real numbers. }\right\}
$$

or in parametric vector form

$$
\mathcal{S}=\left\{\left[\begin{array}{c}
-4 \\
6 \\
0 \\
0 \\
-1
\end{array}\right]+x_{3}\left[\begin{array}{c}
3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
-1 \\
0 \\
1 \\
0
\end{array}\right]: \text { where } x_{3} \text { and } x_{4} \text { are any real numbers. }\right\}
$$

2. Describe geometrically those \mathbf{c} for which you can solve $A \mathbf{x}=\mathbf{c}$. Describe geometrically those c for which you can solve $B \mathbf{x}=\mathbf{c}$, where

$$
A=\left[\begin{array}{ccc}
0 & 0 & 13 \\
0 & 12 & 11 \\
10 & 9 & 8
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & 3 & 3 \\
2 & 1 & 2 \\
1 & 8 & 7
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

By swapping the first and last rows, we see that the matrix A is row equivalent to

$$
\left(\begin{array}{ccc}
0 & 0 & 13 \\
0 & 12 & 11 \\
10 & 9 & 8
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
10 & 9 & 8 \\
0 & 12 & 11 \\
0 & 0 & 13
\end{array}\right)
$$

This matrix has a pivot in each column, so that $A \mathbf{x}=\mathbf{c}$ may be solved for every \mathbf{c}.
Perform row operations on the augmented matrix $(B \mid \mathbf{c})$.

$$
\begin{aligned}
&\left(\begin{array}{llll}
1 & 3 & 3 & c_{1} \\
2 & 1 & 2 & c_{2} \\
1 & 8 & 7 & c_{3}
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 3 & 3 & c_{1} \\
0 & -5 & -4 & c_{2}-2 c_{2} \\
0 & 5 & 4 & c_{3}-c_{1}
\end{array}\right) \text { Replace } R 2 \text { by } R 2-2 R_{1} \\
& \text { Replace } R 3 \text { by } R 3-R_{1} \\
& \rightarrow\left(\begin{array}{cccc}
1 & 3 & 3 & c_{1} \\
0 & -5 & -4 & c_{2}-2 c_{2} \\
0 & 5 & 4 & c_{3}-c_{1}+\left(c_{2}-2 c_{1}\right)
\end{array}\right) \text { Replace } R 3 \text { by } R 3+R_{2}
\end{aligned}
$$

A geometric condition for \mathbf{c} to be able to solve $B \mathbf{x}=\mathbf{c i s}$ that the equations be consistent. This requires that the bottom row of the REF be zero for \mathbf{c}, or $c_{3}-c_{1}+\left(c_{2}-2 c_{1}\right)=$ $c_{3}+c_{2}-3 c_{1}=0$.
3. (a) Let A be a matrix and \mathbf{b}, \mathbf{p} be vectors such that $A \mathbf{p}=\mathbf{b}$. Show that if \mathbf{x} is any solution of $A \mathbf{x}=\mathbf{b}$ then there is a vector \mathbf{v} such that $A \mathbf{v}=\mathbf{0}$ and $\mathbf{x}=\mathbf{p}+\mathbf{v}$.
Let \mathbf{x} be a solution of $A \mathbf{x}=\mathbf{b}$. Let $\mathbf{v}=\mathbf{x}-\mathbf{p}$. Then $\mathbf{x}=\mathbf{p}+\mathbf{v}$ and $A \mathbf{v}=A(\mathbf{x}-\mathbf{p})=$ $A \mathbf{x}-A \mathbf{p}$ by linearity of matrix multiplication. But this equals $A \mathbf{v}=\mathbf{b}-\mathbf{b}=\mathbf{0}$. Thus we have shown that every solution \mathbf{x} of $A \mathbf{x}=\mathbf{b}$ has the form $\mathbf{x}=\mathbf{p}+\mathbf{v}$ where $A \mathbf{v}=\mathbf{0}$.
(b) Let A be a 2×2 matrix such that $A\left[\begin{array}{l}2 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $A\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

Solve $\left[\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}4 \\ -6\end{array}\right]$. Find $A\left[\begin{array}{c}4 \\ -6\end{array}\right]$.
First we solve $\left[\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}4 \\ -6\end{array}\right]$. The augmented matrix row reduces

$$
\left(\begin{array}{ccc}
2 & 1 & 4 \\
2 & 3 & -6
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
2 & 1 & 4 \\
0 & 2 & -10
\end{array}\right)
$$

so $x_{2}=-5$ and $2 x_{1}=4-x_{2}=9$ so $x_{1}=\frac{9}{2}$. This expresses the last vector as a linear combination

$$
\left[\begin{array}{c}
4 \\
-6
\end{array}\right]=x_{1}\left[\begin{array}{l}
2 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\frac{9}{2}\left[\begin{array}{l}
2 \\
2
\end{array}\right]-5\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

It follows by linearity of matrix multiplication that

$$
A\left[\begin{array}{c}
4 \\
-6
\end{array}\right]=A\left(\frac{9}{2}\left[\begin{array}{l}
2 \\
2
\end{array}\right]-5\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right)=\frac{9}{2} A\left[\begin{array}{l}
2 \\
2
\end{array}\right]-5 A\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\frac{9}{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]-5\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{9}{2} \\
-5
\end{array}\right]
$$

4. (a) Define the span the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$. For the given set of vectors \mathcal{S}, is $\mathbf{R}^{3}=\operatorname{span}\{\mathcal{S}\}$? Explain. Is \mathbf{b} in span \mathcal{S} ? Explain.

$$
\mathcal{S}=\left\{\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right], \quad\left[\begin{array}{c}
-1 \\
18 \\
1
\end{array}\right]\right\}, \quad \mathbf{b}=\left[\begin{array}{c}
13 \\
-3 \\
7
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

The span of the set of vectors $\mathcal{Q}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is the set of all linear combinations of these vectors. In symbols,

$$
\operatorname{span} \mathcal{Q}=\left\{x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}: x_{1}, x_{2}, \ldots, x_{p} \text { may be any real numbers }\right\}
$$

$\mathbf{R}^{3}=\operatorname{span} \mathcal{S}$ all elements $\mathbf{c} \in \mathbf{R}^{3}$ are linear combinations of \mathcal{S}. In other words, if A is the matrix whose column vectors are from \mathcal{S} then $A \mathbf{x}=\mathbf{c}$ may be solved for any $\mathbf{c} \in \mathbf{R}^{3}$. Forming the augmented matrix $(A|\mathbf{b}| \mathbf{c})$ and row reducing, we find

$$
\begin{aligned}
\left(\begin{array}{ccccc}
1 & 3 & -1 & 13 & c_{1} \\
4 & 1 & 18 & -3 & c_{2} \\
1 & 2 & 1 & 7 & c_{3}
\end{array}\right) & \rightarrow\left(\begin{array}{ccccc}
1 & 3 & -1 & 13 & c_{1} \\
0 & -11 & 22 & -55 & c_{2}-4 c_{1} \\
0 & -1 & 2 & -6 & c_{3}-c_{1}
\end{array}\right) \quad \begin{array}{c}
\text { Replace } R_{2} \text { by } R_{2}-4 R_{1} \\
\text { Replace } R_{3} \text { by } R_{3}-R_{1}
\end{array} \\
& \rightarrow\left(\begin{array}{ccccc}
1 & 3 & -1 & 13 & c_{1} \\
0 & 1 & -2 & 5 & -\frac{1}{11} c_{2}+\frac{4}{11} c_{1} \\
0 & -1 & 2 & -6 & c_{3}-c_{1}
\end{array}\right) \quad \text { Replace } R_{2} \text { by }-\frac{1}{11} R 2 \\
& \rightarrow\left(\begin{array}{ccccc}
1 & 3 & -1 & 13 & c_{1} \\
0 & 1 & -2 & 5 & -\frac{1}{11} c_{2}+\frac{4}{11} c_{1} \\
0 & 0 & 0 & -1 & c_{3}-\frac{1}{11} c_{2}-\frac{7}{11} c_{1}
\end{array}\right) \quad \text { Replace } R_{3} \text { by } R_{3}+R 2
\end{aligned}
$$

The row echelon form of $A \mathbf{x}=\mathbf{b}$ has a "zero equals nonzero" row, so is inconsitent. \mathbf{b} is not in the span of \mathcal{S}. To avoid this bad row in the row echelon form of $A \mathbf{x}=\mathbf{c}$, we see that the geometric condition to be able to solve the system is that the lower corner vanish, namely, $c_{3}-\frac{1}{11} c_{2}-\frac{7}{11} c_{1}=0$.
5. Suppose that the row echelon form of the matrix A is R. Is the solution of $A \mathbf{x}=0$ unique? Explain why or why not. Is the solution of $A \mathbf{x}=0$ unique? Explain why or why not. Does the equatiomn $B \mathbf{x}=\mathbf{c}$ always have a unique solution? Explain why or why not. For "*" representing any number, the matrices are given by

$$
R=\left[\begin{array}{llllll}
1 & * & * & * & * & * \\
0 & 0 & 2 & * & * & * \\
0 & 0 & 0 & 0 & 3 & * \\
0 & 0 & 0 & 0 & 0 & 4
\end{array}\right], \quad T=\left[\begin{array}{cccc}
1 & * & * & * \\
0 & 2 & * & * \\
0 & 0 & 3 & * \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0 \\
] 0
\end{array}\right]
$$

The row echelon form of $A \mathbf{x}=\mathbf{0}$ is $R \mathbf{x}=\mathbf{0}$. Since it has x_{2} and x_{4} as free variables, the solution space depends on two arbitrary constants so $\mathbf{x}=\mathbf{0}$ is not the only solution. The solution is not unique.
The row echelon form of $B \mathbf{x}=\mathbf{c}$ is $R \mathbf{x}=\tilde{\mathbf{c}}$, where $\tilde{\mathbf{c}}$ is the result of applying row operations that reduce B to T to the vector \mathbf{c}. Since there are no free variables, the solution is unique if it exists. However, since T has zero rows, then for some bad matrices B, the row operations may introduce nonzero values in the last two tows of $\tilde{\mathbf{c}}$. Thus, no, the equatiomn $B \mathbf{x}=\mathbf{c}$ does not always have a unique solution. Its solution may not exist.
6. The Cambridge Diet Formula is a mixture of foodstuffs that contain essential nutrients with few calories. 100 g of soy flour contains 50 g of protein, 40 g of carbohydrate and 10 g of fat. 100 g of whey contains 30 g of protein, 60 g of carbohydrate and 10 g of fat. Write a vector equation for the unknown amounts in grams of soy flour and whey to be mixed in order to get a formula with 36 g of protein, 54 g of carbohydrates and 10 g of fat. If possible, solve for how much soy flour and whey are needed for this mixture.
We are given vectors of grams of protein, carbohydrates and fat per 100 g of foodstuff. Their linear combination with weights x_{1} and x_{2}, in hundreds of grams soy flour and whey, respectively, gives the nutrition vector of the mixture which is to equal the specified nutrition vector. The vector equation is

$$
\left[\begin{array}{c}
\text { g. protein } \\
\text { g. carbohydrate } \\
\text { g. fat }
\end{array}\right]=x_{1}\left[\begin{array}{l}
50 \\
40 \\
10
\end{array}\right]+x_{2}\left[\begin{array}{l}
30 \\
60 \\
10
\end{array}\right]=\left[\begin{array}{l}
36 \\
54 \\
10
\end{array}\right]
$$

For an equation in grams, we would replace x_{i} by y_{i}, where $y_{i}=100 x_{i}$ is the number of grams. Write this equation, $A \mathbf{x}=\mathbf{b}$, as an augmented matrix which we row reduce.

$$
\begin{aligned}
\left(\begin{array}{lll}
50 & 30 & 36 \\
40 & 60 & 54 \\
10 & 10 & 10
\end{array}\right) & \rightarrow\left(\begin{array}{ccc}
10 & 10 & 10 \\
40 & 60 & 54 \\
50 & 30 & 36
\end{array}\right) \quad \text { Swap } R 1 \text { and } R 3 \\
& \rightarrow\left(\begin{array}{ccc}
10 & 10 & 10 \\
0 & 20 & 14 \\
0 & -20 & -14
\end{array}\right) \quad \begin{array}{l}
\text { Replace } R_{2} \text { by } R 2-4 R 1 \\
\text { Replace } R_{2} \text { by } R 2-5 R 1 \\
\end{array} \\
& \rightarrow\left(\begin{array}{ccc}
10 & 10 & 10 \\
0 & 20 & 14 \\
0 & 0 & 0
\end{array}\right) \quad \text { Replace } R_{3} \text { by } R 3+R 2
\end{aligned}
$$

The system of three equations in two unknowns is consistent because there is no bad row. Solving, we see that $x_{2}=\frac{14}{20}=.7$ and $10 x_{1}=10-10 x_{2}=10-7=3$ so that $x_{1}=.3$. Thus the grams of soy flour and whey that satisfy the vector equation are $y_{1}=100 x_{1}=30$ and $y_{2}=100 x_{2}=70$, respectively.

