Math 2270 § 2.
Treibergs $a t$

Fourth Midterm Part 1
Name: \qquad Solutions
November 18, 2020

1. Find all eigenvalues and eigenvectors. Show your work to get credit.

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

First, find the characteristic polynomial using the $3 \times 3 \searrow \searrow \searrow \swarrow \swarrow \swarrow$ determinant formula

$$
\left|\begin{array}{ccc}
2-\lambda & 1 & 0 \\
1 & 2-\lambda & 0 \\
1 & 1 & 1-\lambda
\end{array}\right| \quad=\begin{aligned}
& =(2-\lambda)^{2}(1-\lambda)-(1-\lambda)=(1-\lambda)\left[(2-\lambda)^{2}-1\right] \\
& =(1-\lambda)\left[3-4 \lambda+\lambda^{2}\right]=(1-\lambda)(1-\lambda)(3-\lambda)
\end{aligned}
$$

Thus the eigenvalues are the roots $\lambda=1,1,3$. Solving for independent eivenvectors, for $\lambda_{1}=1$

$$
0=\left(A-\lambda_{1} I\right)\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

For $\lambda_{2}=3$

$$
0=\left(A-\lambda_{2} I\right) \mathbf{v}_{3}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -1 & 0 \\
1 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Thus the λ_{1} eigenvectors are linear combinations of \mathbf{v}_{1} and \mathbf{v}_{2} and all λ_{2} eigenvectors are linear combinations of \mathbf{v}_{3}.
2. Find a matrix that diagonalizes A. Show that your matrix does the job.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]
$$

Find the characteristic polynomial to find the eigenvalues.

$$
\left|\begin{array}{cc}
1-\lambda & 2 \\
4 & 3-\lambda
\end{array}\right|=(1-\lambda)(3-\lambda)-8=-5-4 \lambda+\lambda^{2}=(-5+\lambda)(1+\lambda)
$$

whose roots are eigenvalues $\lambda_{1}=5, \lambda_{2}=-1$. Solving for eigenvectors,

$$
0=\left(A-\lambda_{1} I\right) \mathbf{v}_{1}=\left[\begin{array}{cc}
-4 & 2 \\
4 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad 0=\left(A-\lambda_{2} I\right) \mathbf{v}_{1}=\left[\begin{array}{cc}
2 & 2 \\
4 & 4
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Thus a diagonalizing matrix P and diagonal matrix D are

$$
P=\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right], \quad D=\left[\begin{array}{cc}
5 & 0 \\
0 & -1
\end{array}\right]
$$

To check that P diagonalizes $P^{-1} A P=D$, it is easier see that

$$
A P=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
5 & 1 \\
10 & -1
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
5 & 0 \\
0 & -1
\end{array}\right]=P D
$$

$=$
3. Prove that $\lim _{n \rightarrow \infty} A^{n} \mathbf{v}=\mathbf{w}$, where

$$
A=\left[\begin{array}{cc}
.7 & .4 \\
.3 & .6
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
7 \\
7
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{l}
8 \\
6
\end{array}\right]
$$

We find eigenvectors and express \mathbf{v} as their linear combination. Then the powers are easy. Find the characteristic polynomial to find the eigenvalues.

$$
\left|\begin{array}{cc}
.7-\lambda & .4 \\
.3 & .6-\lambda
\end{array}\right|=(.7-\lambda)(.6-\lambda)-.12=.3-1.3 \lambda+\lambda^{2}=(.3-\lambda)(1-\lambda)
$$

whose roots are eigenvalues $\lambda_{1}=.3, \lambda_{2}=1$. Solving for eigenvectors,

$$
0=\left(A-\lambda_{1} I\right) \mathbf{v}_{1}=\left[\begin{array}{cc}
.4 & .4 \\
.3 & .3
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \quad 0=\left(A-\lambda_{2} I\right) \mathbf{v}_{1}=\left[\begin{array}{cc}
-.3 & .4 \\
.3 & -.4
\end{array}\right]\left[\begin{array}{l}
4 \\
3
\end{array}\right]
$$

Now

$$
\mathbf{v}=\left[\begin{array}{l}
7 \\
7
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+2\left[\begin{array}{l}
4 \\
3
\end{array}\right]=\mathbf{v}_{1}+2 \mathbf{v}_{2}
$$

We apply A^{n} and use $A^{n} \mathbf{v}_{i}=\lambda_{i}^{n} \mathbf{v}$,

$$
A^{n} \mathbf{v}=A^{n}\left(\mathbf{v}_{1}+2 \mathbf{v}_{2}\right)=A^{n} \mathbf{v}_{1}+2 A^{n} \mathbf{v}_{2}=(.3)^{n} \mathbf{v}_{1}+2(1)^{n} \mathbf{v}_{2} \rightarrow 2 \mathbf{v}_{2}=\mathbf{w}
$$

as $n \rightarrow \infty$.
4. Let
$A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 1 & 4 & -1 \\ 1 & -4 & 7 \\ 2 & 4 & 2\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}3 \\ -1 \\ -1\end{array}\right]$
Find a basis for Row A. Is the vector $\mathbf{v} \in(\operatorname{Row} A)^{\perp}$? Why?
A basis may be found by doing row operations on A.

$$
\left[\begin{array}{ccc}
1 & 0 & 3 \\
1 & 4 & -1 \\
1 & -4 & 7 \\
2 & 4 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 4 & -4 \\
0 & -4 & 4 \\
0 & 4 & -4
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 4 & -4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Thus a basis for Row A consists of pivot rows of REF

$$
\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}=\{(1,0,3),(0,4,-4)\}
$$

$\mathbf{v} \in(\text { Row } A)^{\perp}$ if $\mathbf{v} \cdot \mathbf{w}=0$ for all $\mathbf{w} \in \operatorname{Row} A$. But since such $\mathbf{w}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$ are linear combinations of the basis vectors, it suffices to check that \mathbf{v} is perpendicular to each basis vector. Now
$\mathbf{b}_{1} \cdot \mathbf{v}=\left[\begin{array}{lll}1 & 0 & 3\end{array}\right]\left[\begin{array}{c}3 \\ -1 \\ -1\end{array}\right]=3-3=0, \quad \mathbf{b}_{2} \cdot \mathbf{v}=\left[\begin{array}{lll}0 & 4 & -4\end{array}\right]\left[\begin{array}{c}3 \\ -1 \\ -1\end{array}\right]=-4+4=0$.
Hence $\mathbf{w} \cdot \mathbf{v}=\left(c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}\right) \cdot \mathbf{v}=c_{1} \mathbf{b}_{1} \cdot \mathbf{v}+c_{2} \mathbf{b}_{2} \cdot \mathbf{v}=0+0=0$. Thus $\mathbf{w} \cdot \mathbf{v}=0$ for all $\mathbf{w} \in \operatorname{Row} A$ so $\mathbf{v} \in(\text { Row } A)^{\perp}$.
5. Determine whether the following statements are true or false. If true, give a short explanation. If false, find matrices for which the statement fails.
(a) Statement. $A=\left[\begin{array}{cc}2 & -1 \\ 2 & 4\end{array}\right]$ is similar to $B=\left[\begin{array}{cc}3 & -1 \\ 1 & 3\end{array}\right]$.

True. The characteristic polynomial of the matrix A is

$$
\left|\begin{array}{cc}
2-\lambda & -1 \\
2 & 4-\lambda
\end{array}\right|=(2-\lambda)(4-\lambda)+2=10-6 \lambda+\lambda^{2}=1+(3-\lambda)^{2}
$$

whose roots are complex eigenvalues, $\lambda=3 \mp i$. The matrix is similar to a dilation and rotation which for $\lambda=3-i$ takes the form B.
(b) Statement. Let \mathbb{V} and \mathbb{W} be subspaces of \mathbf{R}^{n} such that $\mathbb{V} \subset \mathbb{W}$. Then $\mathbb{W}^{\perp} \subset \mathbb{V}^{\perp}$. True. We show $\mathbf{x} \in \mathbb{W}^{\perp}$ implies $\mathbf{x} \in \mathbb{V}^{\perp} . \mathbf{x} \in \mathbb{W}^{\perp}$ means $\mathbf{x} \cdot \mathbf{w}=0$ for all $\mathbf{w} \in \mathbb{W}$. Hence $\mathbf{x} \cdot \mathbf{v}=0$ for all $\mathbf{v} \in \mathbb{V}$ because $\mathbf{v} \in \mathbb{V} \subset \mathbb{W}$. Thus $\mathbf{x} \in \mathbb{V}^{\perp}$.
(c) Statement. Let A be a 2×2 matrix with an eigenvalue λ of multiplicity two. Then the λ eigenspace of A is two dimensional.
FALSE. For example, the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ has double eigenvalue $\lambda=0$, but $A-\lambda I=A$ has rank one so its null space (0 eigenspace of A) has dimension one.
6. (a) Let \mathbb{P}_{2} be the vector space of polynomials of degree at most two. The linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ that moves a polynomial one unit to the left is defined by $T[\mathbf{f}](t)=\mathbf{f}(t+1)$. Find the matrix of the transformation T in the basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$. Since we have

$$
T[1](t)=1, \quad Tt=t+1, \quad T\left[t^{2}\right](t)=(t+1)^{2}=t^{2}+2 t+1
$$

the matrix of the transformation is

$$
M=\left[[T[1]]_{\mathcal{B}}[T[t]]_{\mathcal{B}}\left[T\left[t^{2}\right]\right]_{\mathcal{B}}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] .
$$

(b) Find $\mathcal{T}(\mathbf{v})$ where $\mathcal{T}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is the linear transformation whose matrix in the $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ basis is given by
$[\mathcal{T}(\mathbf{x})]_{\mathcal{B}}=\left[\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right][\mathbf{x}]_{\mathcal{B}}$ for all $\mathbf{x} \in \mathbf{R}^{2}$, where $\quad \mathbf{b}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Solving for $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$ where $\mathbf{v}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$,

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & \frac{1}{2}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & \frac{3}{2} \\
0 & 1 & \frac{1}{2}
\end{array}\right]
$$

so $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{c}\frac{3}{2} \\ \frac{1}{2}\end{array}\right]$. Thus

$$
[\mathcal{T}(\mathbf{v})]_{\mathcal{B}}=\left[\begin{array}{cc}
1 & 0 \\
2 & 3
\end{array}\right][\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]\left[\begin{array}{c}
\frac{3}{2} \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \\
\frac{9}{2}
\end{array}\right] .
$$

It follows that

$$
\mathcal{T}(\mathbf{v})=\frac{3}{2} \mathbf{b}_{1}+\frac{9}{2} \mathbf{b}_{2}=\frac{3}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{9}{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 \\
6
\end{array}\right]
$$

