1. Find the inverse matrix A^{-1} using Cramer's Rule. Other methods will receive zero credit.

$$A = \begin{bmatrix} 6 & 0 & 0 \\ 4 & 5 & 0 \\ 1 & 2 & 3 \end{bmatrix}$$

The determinant of a lower triangular matrix is the product of the diagonals.

$$\begin{vmatrix} 6 & 0 & 0 \\ 4 & 5 & 0 \\ 1 & 2 & 3 \end{vmatrix} = 6 \cdot 5 \cdot 3 = 90.$$

Cramer's rule for the (i, j) entry of the inverse matrix is

$$(A^{-1})_{ij} = \frac{(-1)^{i+j} \det A_{ji}}{\det A}$$

where A_{ij} is the cofactor matrix, the one obtained from A by striking out the *i*th row and *j*th column. Thus

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} +\begin{vmatrix} 5 & 0 \\ 2 & 3 \end{vmatrix} & -\begin{vmatrix} 0 & 0 \\ 2 & 3 \end{vmatrix} & +\begin{vmatrix} 0 & 0 \\ 5 & 0 \end{vmatrix} \\ -\begin{vmatrix} 4 & 0 \\ 1 & 3 \end{vmatrix} & +\begin{vmatrix} 6 & 0 \\ 1 & 3 \end{vmatrix} & -\begin{vmatrix} 6 & 0 \\ 4 & 0 \end{vmatrix} \\ +\begin{vmatrix} 4 & 5 \\ 1 & 2 \end{vmatrix} & -\begin{vmatrix} 6 & 0 \\ 1 & 2 \end{vmatrix} & +\begin{vmatrix} 6 & 0 \\ 4 & 5 \end{vmatrix} \end{pmatrix} = \frac{1}{90} \begin{pmatrix} 15 & 0 & 0 \\ -12 & 18 & 0 \\ 3 & -12 & 30 \end{pmatrix}.$$

2. (a) Find the determinant

Expand on second column.

1	0	3	2	1 1	1	2	2		1	3	2	
2	5	2	1	_ 15	1	1	2 1	2	1	ე ი	2 1	-502(2+2+4)164) - 4
1	2	1	1	= +3	1	1	1	- 2	2 1	2 1	1	$= 5 \cdot 0 - 2(2 + 3 + 4 - 1 - 0 - 4) = 4.$
1	0	1	1		1	T	T		T	T	T	1

(b) Suppose elementary row operations reduce the matrix A to R. What is the determinant det A? Why?

$$R = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 7 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

Note that R is upper triangular so its determinant is the product of diagonals det R = 0. If the reduction is $E_k \cdot E_{k-1} \cdots E_1 \cdot A = R$ where the E_i are elementary matrices, then by taking determinants we have

$$\det(E_k) \cdot \det(E_{k-1}) \cdots \det(E_1) \cdot \det(A) = \det(R) = 0$$

since the determinant of a product is the product of determinants. Now since the determinants of the elementary matrices don't vanish, $det(E_i) \neq 0$, it follows that det(A) = 0.

Another answer is to notice that R has a free variable, so A is not invertible. Thus det A = 0.

(c) What is the area of the ellipse E? [Hint: think a little.]

$$E = \{ (x, y) \in \mathbf{R}^2 : (2x + 3y)^2 + (-3x + y)^2 \le 3^2 \}.$$

Define the matrix transformation

$$\begin{pmatrix} u \\ v \end{pmatrix} = T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Then the circular region of radius 3

$$C=\left\{(u,v):u^2+v^2\leq 3^2\right\}$$

has area $\pi r^2 = 9\pi$. We have T(E) = C. Using the fact that the area of a matrix transformation of a domain changes by a factor determinant of the matrix

$$9\pi = \operatorname{Area}(C) = \operatorname{Area}(T(E)) = \left| \det \begin{pmatrix} 2 & 3 \\ -3 & 1 \end{pmatrix} \right| \operatorname{Area}(E) = 11 \operatorname{Area}(E)$$

we see that

$$\operatorname{Area}(E) = \frac{9\pi}{11}.$$

3. Find bases for Nul A and Col A where

$$A = \begin{bmatrix} 1 & 2 & 2 & 2 & 2 \\ 2 & 2 & 3 & 3 & 3 \\ 3 & 6 & 6 & 6 & 3 \\ 0 & 2 & 1 & 1 & 1 \end{bmatrix}$$

Doing row operations we find

$$A = \begin{bmatrix} 1 & 2 & 2 & 2 & 2 \\ 2 & 2 & 3 & 3 & 3 \\ 3 & 6 & 6 & 6 & 3 \\ 0 & 2 & 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & 2 \\ 0 & -2 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -3 \\ 0 & 2 & 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 2 & 2 \\ 0 & -2 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = R$$

Solving for Nul $A = \{ \mathbf{x} \in \mathbf{R}^5 : A\mathbf{x} = \mathbf{0} \}$ which is the same as solving $R\mathbf{x} = \mathbf{0}$, we have free variables x_4 and x_4 . Thus $x_5 = 0$, $-2x_2 = x_5 + x_4 + x_3$, so $x_2 = -\frac{1}{2}x_3 - \frac{1}{2}x_4$ and $x_1 = -2x_5 - 2x_4 - 2x_3 - 2x_2 = -2x_4 - 2x_3 + (x_3 + x_4) = -x_3 - x_4$. Hence

$$\operatorname{Nul} A = \left\{ \begin{bmatrix} -x_3 - x_4 \\ -\frac{1}{2}x_3 - \frac{1}{2}x_4 \\ x_3 \\ x_4 \\ 0 \end{bmatrix} : x_3, x_4 \in \mathbf{R} \right\} = \left\{ x_3 \begin{bmatrix} -1 \\ -\frac{1}{2} \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ -\frac{1}{2} \\ 0 \\ 1 \\ 0 \end{bmatrix} : x_3, x_4 \in \mathbf{R} \right\}$$
$$= \operatorname{span} \left(\mathcal{B} \right), \qquad \mathcal{B} = \left\{ \begin{bmatrix} -1 \\ -\frac{1}{2} \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -\frac{1}{2} \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}.$$

Since the vectors are not multiples of one another, \mathcal{B} is linearly independent, and since it also spans Nul A it is a basis for Nul A.

The pivot columns 1, 2 and 5 of A form the basis of $\operatorname{Col} A$. Thus the basis of $\operatorname{Col} A$ is

$$\left\{ \begin{bmatrix} 1\\2\\3\\0 \end{bmatrix}, \begin{bmatrix} 2\\2\\6\\2 \end{bmatrix}, \begin{bmatrix} 2\\3\\3\\1 \end{bmatrix} \right\}.$$

4. (a) Determine if S = {2 + 3t + 4t², 1 + 2t + 3t², t + 2t²} is a basis for ℙ₂, the space of polynomials of degree two or less.

Write the coordinates of the polynomials in the basis $\mathcal{B} = \{1, t, t^2\}$

$$[2+3t+4t^{2}]_{\mathcal{B}} = \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \qquad [1+2t+3t^{2}]_{\mathcal{B}} = \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \qquad [t+2t^{2}]_{\mathcal{B}} = \begin{bmatrix} 0\\1\\2 \end{bmatrix}$$

Put the columns in a matrix and row reduce to see if the columns are a basis.

 $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 3 & 1 \\ 3 & 4 & 2 \end{bmatrix} \to \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & -2 & 2 \end{bmatrix} \to \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

There is a free variable, so the columns are dependent. It follows that the polynomial set S, being isomprphic to Col A under the coordinate transformation, is dependent, so S is not a basis of \mathbb{P}_2 .

(b) For the basis \mathcal{B} of \mathbb{R}^3 , find the coordinates $[\mathbf{w}]_{\mathcal{B}}$ of the vector \mathbf{w} in the \mathcal{B} basis.

$$\mathcal{B} = \left\{ \begin{bmatrix} 0\\0\\6 \end{bmatrix}, \begin{bmatrix} 0\\4\\5 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}, \qquad \mathbf{w} = \begin{bmatrix} 6\\6\\6 \end{bmatrix}$$

Form the matrix

$$P_{\mathcal{B}} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 4 & 2 \\ 6 & 5 & 3 \end{bmatrix}.$$

The coordinates $\mathbf{c} = [\mathbf{w}]_{\mathcal{B}}$ solve the equation $P_{\mathcal{B}}\mathbf{c} = \mathbf{w}$. Back-substitution, we find $c_3 = 6, 4c_2 = 6 - 2c_3 = 6 - 12 = -6$ so $c_2 = -\frac{3}{2}$ and $6c_1 = 6 - 5c_2 - 3c_3 = 6 + \frac{15}{2} - 18 = -\frac{9}{2}$. Hence $c_1 = -\frac{3}{4}$.

- 5. Determine whether the following statements are true or false. If true, give a short explanation. If false, find matrices for which the statement fails.
 - (a) STATEMENT. If A and B are 2×2 matrices then $\det(A + B) = \det A + \det B$. FALSE. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ then $A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ but $\det(A + B) = 1 \neq 0 + 0 = \det A + \det B$.
 - (b) (Version 1 from PDF of Part 2.) STATEMENT. it For vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in a vector space \mathbb{V} , if $\mathbf{u} + \mathbf{w} = \mathbf{v} + \mathbf{w}$ then $\mathbf{u} = \mathbf{v}$.

TRUE. The statement follows from the axioms of a vector space. A casual answer invoking the axioms would receive full credit. Here is a strict proof.

$\mathbf{u}+\mathbf{w}=\mathbf{v}+\mathbf{w}$	Assumption.
$(\mathbf{u} + \mathbf{w}) + (-\mathbf{w}) = (\mathbf{v} + \mathbf{w}) + (-\mathbf{w})$	V5. Additive inverse $-\mathbf{w}$ of \mathbf{w} exists
	Post-add it to both sides.
$\mathbf{u} + (\mathbf{w} + (-\mathbf{w})) = \mathbf{v} + (\mathbf{w} + (-\mathbf{w}))$	V3. Associativity of addition
$\mathbf{u}+0=\mathbf{v}+0$	V5. Property of additive inverse
$\mathbf{u} = \mathbf{v}$	V4. Property of zero

(b) (Version 2 from Canvas of Part 2.) STATEMENT. it For vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in a vector space \mathbb{V} , if $\mathbf{u} + \mathbf{w} = \mathbf{v} + \mathbf{w}$ then $\mathbf{v} = \mathbf{w}$. FALSE. The best answer is a counterexample. In the vector space \mathbf{R}^2 take $\mathbf{u} = \mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Then $\mathbf{u} + \mathbf{w} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \mathbf{v} + \mathbf{w}$ but $\mathbf{v} \neq \mathbf{w}$. (c) STATEMENT. Let $\mathcal{F} = \{f : \mathbf{R} \to \mathbf{R}\}$ be the vector space of functions of the real numbers. Then the transformation $T : \mathcal{F} \to \mathcal{F}$ defined by $T[f](x) = \cos[f(x)]$ is a linear transformation.

FALSE. Some students confused \mathcal{F} , a space of functions with \mathbf{R} , the numbers. The easiest way to see that T is not linear is to test the property of linear transformations $L: \mathcal{F} \to \mathcal{F}$ that L[z](x) = z(x), where z(x) = 0, the constant function, is the zero vector of \mathcal{F} . For this transformation, $T[z](x) = \cos(z(x)) = \cos(0) = 1$ wich is not z(x), hence T is not linear.

6. (a) Let \mathcal{M} be the vector space of $n \times n$ matrices. Let $A \in \mathcal{M}$ be any matrix. Show that $H = \{X \in \mathcal{M} : AXA = 0\}$ is a subspace of \mathcal{M} .

Show that H satisfies the conditions of a subspace. First, we have A0A = 0 so $0 \in H$. Second, if $X, Y \in H$ then AXA = 0 and AYA = 0. It follows that A(X + Y)A = 0 so $X + Y \in H$. Third, if X in H and $c \in \mathbf{R}$ Then AXA = 0 so A(cX)A = cAXA = 0 so $cX \in H$. Since H contains zero and is closed under addition and scalar multiplication, it is a subspace of M.

The reason this works is because T(X) = AXA is a linear transformation $T: M \to M$ and $H = \ker T$, which is a linear subspace.

(b) Let $H = \operatorname{span}(S)$ be a subspace of \mathbb{R}^4 . Find a subset of S that is a basis of H.

$S = \left\langle \right\rangle$	1 1 1 1	,	$\begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix}$,	$\begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \end{bmatrix}$,	$\begin{bmatrix} 2\\2\\1\\1 \end{bmatrix}$		þ
								,	

We insert the vectors as columns of A and reduce. Since H = Col A, the pivot columns form the basis.

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The first, second and fourth columns are pivot columns. Thus the basis for H is

$\mathcal{B} = \langle$	1 1 1	,	$\begin{bmatrix} 1\\ 2\\ 1\\ 2 \end{bmatrix}$,	$\begin{bmatrix} 2\\2\\1 \end{bmatrix}$	}.
	1		2		1	J