Math $2270 \S 2$.	Third Midterm Part 1	Name:Solutions Treibergs $a t$

1. Find the inverse matrix A^{-1} using Cramer's Rule. Other methods will receive zero credit.

$$
A=\left[\begin{array}{lll}
6 & 0 & 0 \\
4 & 5 & 0 \\
1 & 2 & 3
\end{array}\right]
$$

The determinant of a lower triangular matrix is the product of the diagonals.

$$
\left|\begin{array}{lll}
6 & 0 & 0 \\
4 & 5 & 0 \\
1 & 2 & 3
\end{array}\right|=6 \cdot 5 \cdot 3=90 .
$$

Cramer's rule for the (i, j) entry of the inverse matrix is

$$
\left(A^{-1}\right)_{i j}=\frac{(-1)^{i+j} \operatorname{det} A_{j i}}{\operatorname{det} A}
$$

where $A_{i j}$ is the cofactor matrix, the one obtained from A by striking out the i th row and j th column. Thus

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{lll}
+\left|\begin{array}{ll}
5 & 0 \\
2 & 3
\end{array}\right| & -\left|\begin{array}{ll}
0 & 0 \\
2 & 3
\end{array}\right| & +\left|\begin{array}{ll}
0 & 0 \\
5 & 0
\end{array}\right| \\
-\left|\begin{array}{ll}
4 & 0 \\
1 & 3
\end{array}\right| & +\left|\begin{array}{ll}
6 & 0 \\
1 & 3
\end{array}\right| & -\left|\begin{array}{ll}
6 & 0 \\
4 & 0
\end{array}\right| \\
+\left|\begin{array}{ll}
4 & 5 \\
1 & 2
\end{array}\right| & -\left|\begin{array}{ll}
6 & 0 \\
1 & 2
\end{array}\right| & +\left|\begin{array}{ll}
6 & 0 \\
4 & 5
\end{array}\right|
\end{array}\right)=\frac{1}{90}\left(\begin{array}{ccc}
15 & 0 & 0 \\
-12 & 18 & 0 \\
3 & -12 & 30
\end{array}\right)
$$

2. (a) Find the determinant

Expand on second column.

$$
\left|\begin{array}{llll}
1 & 0 & 3 & 2 \\
2 & 5 & 2 & 1 \\
1 & 2 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right|=+5\left|\begin{array}{lll}
1 & 3 & 2 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right|-2\left|\begin{array}{ccc}
1 & 3 & 2 \\
2 & 2 & 1 \\
1 & 1 & 1
\end{array}\right|=5 \cdot 0-2(2+3+4-1-6-4)=4
$$

(b) Suppose elementary row operations reduce the matrix A to R. What is the determinant $\operatorname{det} A$? Why?
$R=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 7 & 8 \\ 0 & 0 & 0 & 0\end{array}\right]$,
Note that R is upper triangular so its determinant is the product of diagonals $\operatorname{det} R=0$. If the reduction is $E_{k} \cdot E_{k-1} \cdots E_{1} \cdot A=R$ where the E_{i} are elementary matrices, then by taking determinants we have

$$
\operatorname{det}\left(E_{k}\right) \cdot \operatorname{det}\left(E_{k-1}\right) \cdots \operatorname{det}\left(E_{1}\right) \cdot \operatorname{det}(A)=\operatorname{det}(R)=0
$$

since the determinant of a product is the product of determinants. Now since the determinants of the elementary matrices don't vanish, $\operatorname{det}\left(E_{i}\right) \neq 0$, it follows that $\operatorname{det}(A)=0$.
Another answer is to notice that R has a free variable, so A is not invertible. Thus $\operatorname{det} A=0$.
(c) What is the area of the ellipse E? [Hint: think a little.]

$$
E=\left\{(x, y) \in \mathbf{R}^{2}:(2 x+3 y)^{2}+(-3 x+y)^{2} \leq 3^{2}\right\}
$$

Define the matrix transformation

$$
\binom{u}{v}=T\binom{x}{y}=\left(\begin{array}{cc}
2 & 3 \\
-3 & 1
\end{array}\right)\binom{x}{y}
$$

Then the circular region of radius 3

$$
C=\left\{(u, v): u^{2}+v^{2} \leq 3^{2}\right\}
$$

has area $\pi r^{2}=9 \pi$. We have $T(E)=C$. Using the fact that the area of a matrix transformation of a domain changes by a factor determinant of the matrix

$$
9 \pi=\operatorname{Area}(C)=\operatorname{Area}(T(E))=\left|\operatorname{det}\left(\begin{array}{cc}
2 & 3 \\
-3 & 1
\end{array}\right)\right| \operatorname{Area}(E)=11 \operatorname{Area}(E)
$$

we see that

$$
\operatorname{Area}(E)=\frac{9 \pi}{11}
$$

3. Find bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$ where

$$
A=\left[\begin{array}{lllll}
1 & 2 & 2 & 2 & 2 \\
2 & 2 & 3 & 3 & 3 \\
3 & 6 & 6 & 6 & 3 \\
0 & 2 & 1 & 1 & 1
\end{array}\right]
$$

Doing row operations we find

$$
A=\left[\begin{array}{lllll}
1 & 2 & 2 & 2 & 2 \\
2 & 2 & 3 & 3 & 3 \\
3 & 6 & 6 & 6 & 3 \\
0 & 2 & 1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 2 & 2 & 2 & 2 \\
0 & -2 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & -3 \\
0 & 2 & 1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 2 & 2 & 2 & 2 \\
0 & -2 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & -3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=R
$$

Solving for $\operatorname{Nul} A=\left\{\mathbf{x} \in \mathbf{R}^{5}: A \mathbf{x}=\mathbf{0}\right\}$ which is the same as solving $R \mathbf{x}=\mathbf{0}$, we have free variables x_{4} and x_{4}. Thus $x_{5}=0,-2 x_{2}=x_{5}+x_{4}+x_{3}$, so $x_{2}=-\frac{1}{2} x_{3}-\frac{1}{2} x_{4}$ and $x_{1}=-2 x_{5}-2 x_{4}-2 x_{3}-2 x_{2}=-2 x_{4}-2 x_{3}+\left(x_{3}+x_{4}\right)=-x_{3}-x_{4}$. Hence

$$
\begin{aligned}
\mathrm{Nul} A= & \left\{\left[\begin{array}{c}
-x_{3}-x_{4} \\
-\frac{1}{2} x_{3}-\frac{1}{2} x_{4} \\
x_{3} \\
x_{4} \\
0
\end{array}\right]: x_{3}, x_{4} \in \mathbf{R}\right\}=\left\{x_{3}\left[\begin{array}{c}
-1 \\
-\frac{1}{2} \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
-\frac{1}{2} \\
0 \\
1 \\
0
\end{array}\right]: x_{3}, x_{4} \in \mathbf{R}\right\} \\
& =\operatorname{span}(\mathcal{B}), \quad \mathcal{B}=\left\{\left[\begin{array}{c}
-1 \\
-\frac{1}{2} \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-\frac{1}{2} \\
0 \\
1 \\
0
\end{array}\right]\right\}
\end{aligned}
$$

Since the vectors are not multiples of one another, \mathcal{B} is linearly independent, and since it also spans $\operatorname{Nul} A$ it is a basis for $\operatorname{Nul} A$.
The pivot columns 1,2 and 5 of A form the basis of $\operatorname{Col} A$. Thus the basis of $\operatorname{Col} A$ is

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
6 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
3 \\
1
\end{array}\right]\right\}
$$

4. (a) Determine if $S=\left\{2+3 t+4 t^{2}, 1+2 t+3 t^{2}, t+2 t^{2}\right\}$ is a basis for \mathbb{P}_{2}, the space of polynomials of degree two or less.
Write the coordinates of the polynomials in the basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$

$$
\left[2+3 t+4 t^{2}\right]_{\mathcal{B}}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right], \quad\left[1+2 t+3 t^{2}\right]_{\mathcal{B}}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right], \quad\left[t+2 t^{2}\right]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

Put the columns in a matrix and row reduce to see if the columns are a basis.

$$
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 3 & 1 \\
3 & 4 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
0 & -2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

There is a free variable, so the columns are dependent. It follows that the polynomial set S, being isomprphic to $\operatorname{Col} A$ under the coordinate transformation, is dependent, so S is not a basis of \mathbb{P}_{2}.
(b) For the basis \mathcal{B} of \mathbf{R}^{3}, find the coordinates $[\mathbf{w}]_{\mathcal{B}}$ of the vector \mathbf{w} in the \mathcal{B} basis.

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
0 \\
0 \\
6
\end{array}\right],\left[\begin{array}{l}
0 \\
4 \\
5
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right\}, \quad \mathbf{w}=\left[\begin{array}{l}
6 \\
6 \\
6
\end{array}\right]
$$

Form the matrix

$$
P_{\mathcal{B}}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 4 & 2 \\
6 & 5 & 3
\end{array}\right]
$$

The coordinates $\mathbf{c}=[\mathbf{w}]_{\mathcal{B}}$ solve the equation $P_{\mathcal{B}} \mathbf{c}=\mathbf{w}$. Back-substitution, we find $c_{3}=6,4 c_{2}=6-2 c_{3}=6-12=-6$ so $c_{2}=-\frac{3}{2}$ and $6 c_{1}=6-5 c_{2}-3 c_{3}=6+\frac{15}{2}-18=$ $-\frac{9}{2}$. Hence $c_{1}=-\frac{3}{4}$.
5. Determine whether the following statements are true or false. If true, give a short explanation. If false, find matrices for which the statement fails.
(a) Statement. If A and B are 2×2 matrices then $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$.

False. Let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ then $A+B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ but $\operatorname{det}(A+B)=1 \neq 0+0=$ $\operatorname{det} A+\operatorname{det} B$.
(b) (Version 1 from PDF of Part 2.) Statement. it For vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in a vector space \mathbb{V}, if $\mathbf{u}+\mathbf{w}=\mathbf{v}+\mathbf{w}$ then $\mathbf{u}=\mathbf{v}$.
True. The statement follows from the axioms of a vector space. A casual answer invoking the axioms would receive full credit. Here is a strict proof.

$$
\begin{aligned}
\mathbf{u}+\mathbf{w} & =\mathbf{v}+\mathbf{w} & & \text { Assumption. } \\
(\mathbf{u}+\mathbf{w})+(-\mathbf{w}) & =(\mathbf{v}+\mathbf{w})+(-\mathbf{w}) & & \text { V5. Additive inverse }-\mathbf{w} \text { of } \mathbf{w} \text { exists. } \\
\mathbf{u}+(\mathbf{w}+(-\mathbf{w})) & =\mathbf{v}+(\mathbf{w}+(-\mathbf{w})) & & \text { V3. Associativity of addition } \\
\mathbf{u}+\mathbf{0} & =\mathbf{v}+\mathbf{0} & & \text { V5. Property of additive inverse } \\
\mathbf{u} & =\mathbf{v} & & \text { V4. Property of zero }
\end{aligned}
$$

(b) (Version 2 from Canvas of Part 2.) Statement. it For vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in a vector space \mathbb{V}, if $\mathbf{u}+\mathbf{w}=\mathbf{v}+\mathbf{w}$ then $\mathbf{v}=\mathbf{w}$.
FALSE. The best answer is a counterexample. In the vector space \mathbf{R}^{2} take $\mathbf{u}=\mathbf{v}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, $\mathbf{w}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. Then $\mathbf{u}+\mathbf{w}=\left[\begin{array}{l}2 \\ 3\end{array}\right]=\mathbf{v}+\mathbf{w}$ but $\mathbf{v} \neq \mathbf{w}$.
(c) Statement. Let $\mathcal{F}=\{f: \mathbf{R} \rightarrow \mathbf{R}\}$ be the vector space of functions of the real numbers. Then the transformation $T: \mathcal{F} \rightarrow \mathcal{F}$ defined by $T[f](x)=\cos [f(x)]$ is a linear transformation.
FALSE. Some students confused \mathcal{F}, a space of functions with \mathbf{R}, the numbers. The easiest way to see that T is not linear is to test the property of linear transformations $L: \mathcal{F} \rightarrow \mathcal{F}$ that $L[z](x)=z(x)$, where $z(x)=0$, the constant function, is the zero vector of \mathcal{F}. For this transformation, $T[z](x)=\cos (z(x))=\cos (0)=1$ wich is not $z(x)$, hence T is not linear.
6. (a) Let \mathcal{M} be the vector space of $n \times n$ matrices. Let $A \in \mathcal{M}$ be any matrix. Show that $H=\{X \in \mathcal{M}: A X A=0\}$ is a subspace of \mathcal{M}.
Show that H satisfies the conditions of a subspace. First, we have $A 0 A=0$ so $0 \in H$. Second, if $X, Y \in H$ then $A X A=0$ and $A Y A=0$. It follows that $A(X+Y) A=0$ so $X+Y \in H$. Third, if X in H and $c \in \mathbf{R}$ Then $A X A=0$ so $A(c X) A=c A X A=0$ so $c X \in H$. Since H contains zero and is closed under addition and scalar multiplication, it is a subspace of M.
The reason this works is because $T(X)=A X A$ is a linear transformation $T: M \rightarrow M$ and $H=\operatorname{ker} T$, which is a linear subspace.
(b) Let $H=\operatorname{span}(S)$ be a subspace of \mathbf{R}^{4}. Find a subset of S that is a basis of H.

$$
S=\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
1 \\
1
\end{array}\right]\right\}
$$

We insert the vectors as columns of A and reduce. Since $H=\operatorname{Col} A$, the pivot columns form the basis.

$$
\left[\begin{array}{cccc}
1 & 1 & 2 & 2 \\
1 & 2 & 1 & 2 \\
1 & 1 & 2 & 1 \\
1 & 2 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & -1 \\
0 & 1 & -1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The first, second and fourth columns are pivot columns. Thus the basis for H is

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
1 \\
1
\end{array}\right]\right\}
$$

