Math 2270 § 1.	Third Midterm Exam	Name:	Solutions
Treibergs at		November	18, 2015

1. Diagonalize A. Check your answer. [Hint: the eigenvalues are $\lambda = 1, 2, 2$.]

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 3 \end{pmatrix}$$

We find an eigenvector for $\lambda_1 = 1$ by inspection.

$$\mathbf{0} = (A - \lambda_1 I)\mathbf{v}_1 = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

We find eigenvectors for $\lambda_2 = 2$ by inspection.

$$[\mathbf{0},\mathbf{0}] = (A - \lambda_2 I)[\mathbf{v}_2,\mathbf{v}_3] = \begin{pmatrix} -1 & 1 & 1\\ 1 & -1 & -1\\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1\\ 1 & 0\\ 0 & 1 \end{pmatrix}.$$

The diagonalizing matrix P such that $P^{-1}AP = D$ is

$$P = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

We check by seeing if AP = PD. Indeed,

$$AP = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ -1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
$$PD = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ -1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

which are equal.

2. Find the rank of A. Let H = Col A. Show that S is a linearly independent subset of H. Show also that S is not a basis for H. Show that S can be extended to a basis of H = Col A by finding vectors to add to S to make a basis.

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}, \qquad S = \left\{ \begin{array}{c} \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 2 \\ 1 \end{pmatrix} \right\}.$$

Row reducing A we find

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

There are three pivots in the echelon matrix, thus $|\operatorname{rank} A = 3|$. Moreover, a basis for $H = \operatorname{Col} A$ is given by $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$, the pivot columns of A. Observe that dim H = 3.

Second, observe that

$$\mathbf{s}_{1} = \begin{pmatrix} 2\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} + \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix} = \mathbf{a}_{1} + \mathbf{a}_{2}, \qquad \mathbf{s}_{2} = \begin{pmatrix} 2\\1\\2\\1 \end{pmatrix} = \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix} + \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} = \mathbf{a}_{2} + \mathbf{a}_{3}.$$

Thus both \mathbf{s}_1 and \mathbf{s}_2 are linear combinations of columns of A, thus are in $H = \operatorname{Col} A$. Also \mathbf{s}_1 and \mathbf{s}_2 are not multiples of each other, so are independent. S has two vectors which is too few to be a basis of H which is three dimensional.

A basis for H may be achieved by adding the vector $\mathbf{s}_3 = \mathbf{a}_2$. The set $\mathcal{B} = {\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3}$ is a basis. To see it, we observe that

$$\mathbf{a}_1 = \mathbf{s}_1 - \mathbf{s}_3, \qquad \mathbf{a}_2 = \mathbf{s}_3, \qquad \mathbf{a}_3 = \mathbf{s}_2 - \mathbf{s}_3.$$

Thus vectors in $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$, the basis for H, are linear combinations of vectors of \mathcal{B} . Thus three vectors in \mathcal{B} span the three dimensional space H. By the Basis Theorem, \mathcal{B} is a basis for H.

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) Let λ be an eigenvalue of the matrix A with multiplicity m. Then A has m independent eigenvectors corresponding to λ .

FALSE. Not every matrix has as many independent eigenvectors as the algebraic multiplicity. For example, the characteristic polynomial of

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}, \qquad A - 3I = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

is $\det(A - \lambda I) = (3 - \lambda)^2$ so $\lambda = 3$ is an eigenvalue with multiplicity m = 2 but A - 3I is a rank one matrix and has only a one dimensional nullspace, the space of $\lambda = 3$ eigenvectors of A.

(b) it If λ is an eigenvalue of the invertible matrix A then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} . TRUE. Since A is invertible,

$$0 \neq \det(A) = \det(A - 0I)$$

so that zero is not an eigenvalue of A. Let \mathbf{v} be a λ -eigenvector. Thus

$$A\mathbf{v} = \lambda \mathbf{v}.$$

Multiplying by A^{-1} and dividing by $\lambda \neq 0$ we find

$$\frac{1}{\lambda}\mathbf{v} = A^{-1}\mathbf{v}$$

so **v** is a $\frac{1}{\lambda}$ eigenvector of A^{-1} .

(c) Eigenvectors corresponding to distinct eigenvalues of the matrix A are orthogonal. FALSE. The eigenvalues of $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ are $\lambda_1 = 1$ and $\lambda_2 = 2$. Eigenvectors are

$$\mathbf{0} = (A - \lambda_1 I)\mathbf{v}_1 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \mathbf{0} = (A - \lambda_2 I)\mathbf{v}_2 = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

But

$$\mathbf{v}_1 \bullet \mathbf{v}_2 = 1 \cdot 1 + 0 \cdot 1 = 1$$

which is not zero so that \mathbf{v}_1 and \mathbf{v}_2 are not orthogonal.

4. In P₂, the polynomials of degree two or less, let B = {1,1+t,1+t+t²} and C = {1,t,t²}. Show that B is a basis for P₂. Find the change of coordinates matrix from basis B to basis C. Let x = 3 + 4t + 5t². Find [x]_B.

The degree two or less polynomials make up the set $\mathbb{P}_2 = \{\alpha + \beta t + \gamma t^2 : \alpha, \beta, \gamma \in \mathbf{R}\}$, which is a vector space under usual addition and scalar multiplication. Observe that

$$1 = \mathbf{b}_1, \qquad t = \mathbf{b}_2 - \mathbf{b}_1, \qquad t^2 = \mathbf{b}_3 - \mathbf{b}_2$$

so that any vector $\mathbf{x} \in \mathbb{P}_2$ may be written

$$\mathbf{x} = \alpha + \beta t + \gamma t^2 = \alpha \mathbf{b}_1 + \beta (\mathbf{b}_2 - \mathbf{b}_1) + \gamma (\mathbf{b}_3 - \mathbf{b}_2) = (\alpha - \beta) \mathbf{b}_1 + (\beta - \gamma) \mathbf{b}_2 + \gamma \mathbf{b}_3.$$
(1)

It is a linear combination of \mathbf{b}_i 's, thus \mathbb{P}_2 is spanned by \mathcal{B} . Also the dependency condition

$$0 = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + c_3 \mathbf{b}_3 = c_1 \cdot 1 + c_2 (1+t) + c_3 (1+t+t^2)$$

implies the equations

$$0 = c_1 + c_2 + c_3$$
$$0 = c_2 + c_3$$
$$0 = c_3$$

whose only solution is $c_1 = c_2 = c_3 = 0$. Thus \mathcal{B} is also independent, therefore a basis.

Alternatively, we could consider coordinates $[\mathbf{b}_i]_{\mathcal{C}}$ in the \mathcal{C} basis, the columns of $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$, and argue that they form a basis in \mathbf{R}^3 . One way is to check that $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$ is invertible (its determinant is nonzero) so that its columns are a basis of \mathbf{R}^3 so the corresponding functions \mathbf{b}_i are a basis for \mathbb{P}_2 .

The coordinates for the \mathbf{b}_i 's in the \mathcal{C} basis are

$$[\mathbf{b}_1]_{\mathcal{C}} = [1]_{\mathcal{C}} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad [\mathbf{b}_2]_{\mathcal{C}} = [1+t]_{\mathcal{C}} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \quad [\mathbf{b}_3]_{\mathcal{C}} = [1+t+t^2]_{\mathcal{C}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Thus the change of coordinates matrix from \mathcal{B} to \mathcal{C} is

$$\underset{\mathcal{C}\leftarrow\mathcal{B}}{P} = \begin{bmatrix} [\mathbf{b}_1]_{\mathcal{C}}, [\mathbf{b}_2]_{\mathcal{C}}, [\mathbf{b}_3]_{\mathcal{C}} \end{bmatrix} = \begin{pmatrix} 1 & 1 & 1\\ 0 & 1 & 1\\ 0 & 0 & 1 \end{pmatrix}$$

Finally, this matrix relates the coordinates according to

$$\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{C}}$$

For $\mathbf{x} = 3 + 4t + 5t^2$ we know $[\mathbf{x}]_{\mathcal{C}}$ and $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ and must solve for $[\mathbf{x}]_{\mathcal{B}}$. Writing the augmented matrix $\begin{bmatrix} P \\ \mathcal{C} \leftarrow \mathcal{B} \end{bmatrix}$ and solving

$$\begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 1 & 5 \end{pmatrix}$$

we find $c_3 = 5$, $c_2 = 4 - c_3 = -1$ and $c_1 = 3 - c_2 - c_3 = 3 - (-1) - 5 = -1$. Thus

$$[\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} -1\\ -1\\ 5 \end{pmatrix}.$$

Check:

$$-\mathbf{b}_1 - \mathbf{b}_2 + 5\mathbf{b}_3 = -1 - (1+t) + 5(1+t+t^2) = 3 + 4t + 5t^2.$$

Alternately, we may use (1) to see that

$$3 + 4t + 5t^{2} = (3 - 4)\mathbf{b}_{1} + (4 - 5)\mathbf{b}_{2} + 5\mathbf{b}_{3} = -\mathbf{b}_{1} - \mathbf{b}_{2} + 5\mathbf{b}_{3}.$$

5. (a) Find the eigenvalues and the corresponding eigenvectors of $A = \begin{pmatrix} 6 & 2 \\ -1 & 4 \end{pmatrix}$.

Find the eigenvalue by solving

$$0 = \begin{vmatrix} 6-\lambda & 2\\ -1 & 4-\lambda \end{vmatrix} = (6-\lambda)(4-\lambda) + 2 = \lambda^2 - 10\lambda + 26 = (\lambda-5)^2 + 1.$$

Thus the two eigenvalues are

$$\lambda = 5 - i;$$
 $\bar{\lambda} = 5 + i.$

The λ eigenvector **v** is found by inspection

$$(A - \lambda I)\mathbf{v} = \begin{pmatrix} 1+i & 2\\ -1 & -1+i \end{pmatrix} \begin{pmatrix} -1+i\\ 1 \end{pmatrix}$$

The $\bar{\lambda}$ eigenvector is the complex conjugate

$$\overline{\mathbf{v}} = \begin{pmatrix} -1 - i \\ 1 \end{pmatrix}.$$

(b) Let $B = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 3 & 3 & 4 & 4 \\ 2 & 2 & 2 & 2 \end{pmatrix}$. Find $(\operatorname{Col} B)^{\perp}$.

 $(\operatorname{Col} B)^{\perp}$ is the space of all vectors orthogonal to the generators of $\operatorname{Col} B$, in other words solutions of $B^T \mathbf{x} = \mathbf{0}$ which is $\operatorname{Nul} B^T$. Row reducing B^T we find

$$\begin{pmatrix} 1 & 3 & 2 \\ 1 & 3 & 2 \\ 2 & 4 & 2 \\ 2 & 4 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & -2 & -2 \\ 0 & -2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 \\ 0 & -2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

The variable x_3 is free so can be any real. $x_2 = -x_3$ and $x_1 = -3x_2 - 2x_3 = 3x_3 - 2x_3 = x_3$. Thus the solution is

$$(\operatorname{Col} B)^{\perp} = \operatorname{Nul} B^{T} = \left\{ \begin{pmatrix} x_{3} \\ -x_{3} \\ x_{3} \end{pmatrix} : x_{3} \in \mathbf{R} \right\} = \operatorname{span} \left\{ \begin{array}{c} 1 \\ -1 \\ 1 \end{pmatrix} \right\}.$$