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1. Find a basis for the subspace spanned by the following vectors.

1

2

3

2


,



2

1

1

0


,



1

5

8

6


,



1

14

23

18


We put the vectors in as columns. Then row reduce and choose the pivot columns.

1 2 1 1

2 1 5 14

3 1 8 23

2 0 6 18


→



1 2 1 1

0 −3 3 12

0 −5 5 20

0 −4 4 16


→



1 2 1 1

0 1 −1 −4

0 0 0 0

0 0 0 0


The first and second are pivot columns. Thus a basis for the spanned subspace is

B =





1

2

3

2


,



2

1

1

0




2. Suppose n ≥ 1 and that the vectors H = {v1,v2, . . . ,vn} span the n-dimensional vector

space V. Show that H is a basis for V.

We already know that H spans V. It remains to argue that the vectors in H are linearly
independent, making H a basis. We apply the Spanning Set Theorem, which says that some
subset of H is a basis for the nonzero space V. Here is the argument: suppose that the set
H is not independent. Then one of the vectors, say vk ∈ H, is a linear combination of the
other vectors and may be removed from H leaving a smaller set that still spans V. So long
as there are more than two vectors remaining, we may continue to remove vectors until the
reduced spanning set H′ is independent or there remains only one vector. By assumption,
the space spanned must be nonzero and so if the spanning set H′ consists of a single vector,
it must be the basis for the space.

Now every basis has to have the the same number of vectors which is the dimension n =
dim(V). Thus the independent spanning set H′ must have n vectors, thus H′ = H (no
vectors were removed). This is part of the Basis Theorem in the text.
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3. Find the determinant by row reduction. (Text problem 177[8].)

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 2 −4

0 1 2 −5

2 7 6 −3

−3 −10 −7 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The row operation of subtracting a multiple of one row from another does not change the
determinant. Swapping rows in the last equality multiplies the determinant by −1. The
determinant of an upper triangular matrix is the product of the diagonal entries. D =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 2 −4

0 1 2 −5

0 1 2 5

0 −1 −1 −10

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 2 −4

0 1 2 −5

0 0 0 10

0 0 1 −15

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 2 −4

0 1 2 −5

0 0 1 −15

0 0 0 10

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

(
1 · 1 · 1 · (10)

)
= −10.

4. Let A and B be square matrices. Show that even though AB and BA may not be equal, it
is always true that det(AB) = det(BA). (Problem 177[33] of the text.)

This is a simple consequence of the Theorem that the determinant of a product of square
matrices is the product of determinants. So

det(AB) = det(A) det(B) = det(B) det(A) = det(BA).

5. Using just Theorem 3 of Section 3.2 that gives the effect of elementary row operations on
the determinant of a matrix, show that if two rows of a square matrix A are equal, then
det(A) = 0. The same is true for two columns. Why? (Text problem 177[30].

Assume that rows Ri and Rj of A are equal, where i 6= j. Let E be the elementary row
operation matrix that swaps Ri and Rj . Then because the rows are equal, A = EA. Taking
determinants we find

det(A) = det(EA) = −det(A)

because this row operation flips the sign of the determinant. It follows that det(A) = 0 as
desired.

Now suppose two columns ai and aj are equal, where i 6= j. If we are allowed to transpose
the matrix, then AT has the same determinant as A but now AT has two equal rows aTi
and aTj , thus has zero determinant by what we showed already. However, we can argue just
from Theorem 3. First observe that if A had a zero row, say Ri, then det(A) = 0. To see
this, let E be the elementary row operation that multiplies Ri by 2. By Theorem 3, this
operation doubles the determinant. However A = EA because 2Ri is still a zero row. Thus

det(A) = det(EA) = 2 det(A)

which also implies det(A) = 0. Now, if A has two equal columns, let c be a column vector
whose entries are zero except the ith which is 1 and the jth which is −1. Thus Ac = 0
so there is a nontrivial vector in c ∈ Nul(A). It follows that A may be row-reduced to
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an echelon U matrix with a free column, and therefore, a zero row. Let E1, E2,. . . ,Ep be
matrices that reduce A to echelon form. Hence

Ep · · ·E1 ·A = U

Take determinant of this equation. Now, by Theorem 3, each of the row operations Ei

multiplies the determinant by a nonzero constant ki. It follows that

kp · · · k1 · det(A) = det(U) = 0

because U has a zero row. But since the ki’s are nonzero, it follows that det(A) = 0 too.

6. Find basis for the column space, the row space and the null space of the matrix. (Text
problem 238[3].)

A =



2 −3 6 2 5

−2 3 −3 −3 −4

4 −6 9 5 9

−2 3 3 −4 1


Row reducing, we find

A =



2 −3 6 2 5

−2 3 −3 −3 −4

4 −6 9 5 9

−2 3 3 −4 1


→



2 −3 6 2 5

0 0 3 −1 1

0 0 −3 1 −1

0 0 9 −2 6



→



2 −3 6 2 5

0 0 3 −1 1

0 0 0 0 0

0 0 0 1 3



→



2 −3 6 2 5

0 0 3 −1 1

0 0 0 1 3

0 0 0 0 0


= U
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The first third and fourth columns are pivot columns, so a basis for the column space is

Bcol =





2

−2

4

−2


,



6

−3

9

3


,



2

−3

5

−4




The nonzero rows of the echelon matrix U are a basis for the row space.

Brow =

{ [
2 −3 6 2 5

]
,

[
0 0 3 −1 1

]
,

[
0 0 0 1 3

] }
The basis for the null space are solutions to the homogeneous equation Ax = 0, or what
is the same, Ux = 0. x2 and x5 are free variables. The null space is thus x4 = −3x5,
x3 = 1

3x4 −
1
3x5 = − 4

3x5 and x1 = 3
2x2 − 3x3 − x4 − 5

2x5 = 3
2x2 + 9

2x5 thus

Nul(A) =





3
2x2 + 9

2x5

x2

− 4
3x5

−3x5

x5


: x2, x5 ∈ R



so BNul =





3
2

1

0

0

0


,



9
2

0

− 4
3

−3

1




7. Let A be an m× n matrix. Show that Ax = b has a solution for all b in Rm if and only if

the equations ATx = 0 has only the trivial solution. (Text problem 238[29].)

Assume that ATx = 0 has only the trivial solution. This means that the dimension of the
null space of the transpose is dim(Nul(AT )) = 0. This is the same as the number of free
columns of AT which means that every column of AT is independent, or dim(Col(AT )) = m,
the number of columns of AT . This says that m = dim(Row(A)). In other words, every
row of the echelon form of A must be a pivot row, which form the basis of Row(A). But
this means that every row of the row reduction of the augmented matrix [A,b] to echelon
form has every row a pivot row. But this means we can solve Ax = b for every b ∈ Rm.

Now assume that we can solve Ax = b for every b ∈ Rm. This means that the row reduction
of the augmented matrix [A,b] to echelon form has a pivot in every row (otherwise there is a
zero row that says zero equals a linear combination of the bj ’s so not all b make a consistent
system). But this says that there are m basis elements in Row(A) so dim(Row(A)) = m.
Thus every one of the m columns of AT is linearly independent. It follows that the only
dependence relation AT c = 0 is the trivial one c = 0 thus ATx = 0 has only the trivial
solution.
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8. In P2, find the change of coordinates matrix from the basis B = {1−3t2, 2+t−5t2, 1+2t} to
the standard basis. Then write t2 as a linear combination of the polynomials in B. (Problem
244[14] of the text.)

The standard basis is C = {1, t, t2}. By the theorem, the change of basis matrix is given by
finding coordinates of the basic vectors in one basis in terms of the other basis.

PC←B =
[
[b1]C , [b2]C , [b3]C

]
=
[
[1− 3t2]C , [2 + t− 5t2]C , [1 + 2t]C

]
=


1 2 1

0 1 2

−3 −5 0


To find the coefficients of [t2]B we solve

PC←B[t2]B = [t2]C .

Row reduce the augmented matrix
[
PC←B, [t

2]C
]
.

1 2 1 0

0 1 2 0

−3 −5 0 1

→


1 2 1 0

0 1 2 0

0 1 3 1

 →


1 2 1 0

0 1 2 0

0 0 1 1


Hence x3 = 1, x2 = −2x3 = −2 and x1 = −2x2 − x3 = −2(−2)− 1 = 3. Then

[t2]B =


3

−2

1


so

t2 = 3b2 − 2b1 + b3 = 3(1− 3t2)− 2(2 + t− 5t2) + (1 + 2t).
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9. Let B = {x0, . . . ,x6} and C = {y0, . . . ,y6} where xk = cosk t and yk = cos kt. Let
H = span(B). Show that C is another basis for H. Set P =

[
[y0]B, . . . , [y6]B

]
and calculate

P−1. Explain why the columns of P−1 are the C-coordinate vectors of x0, . . . ,x6. Then
use these coordinate vectors to write trigonometric identities that express powers of cos t in
terms of the functions in C. (Text problems 230[34] and 244[17].)

We use the Pythagorean identity sin2 t+ cos2 t = 1 and the addition formulæ

cos(A+B) = cosA cosB − sinA sinB; sin(A+B) = sinA cosB + |cosA sinB

This thus we get the equations expressing the C in terms of B.

cos 2t = cos2 t− sin2 t = cos2 t− (1− cos2 t) = 2 cos2 t− 1

cos 3t = cos 2t cos t− sin 2t sin t = (2 cos2 t− 1) cos t− 2 sin2 t cos t

= 2 cos3 t− cos t− 2(1− cos2 t) cos t = 4 cos3 t− 3 cos t

sin 3t = sin 2t cos t+ cos 2t sin t = 2 sin t cos2 t+ (2 cos2 t− 1) sin t

= (4 cos2 t− 1) sin t

cos 4t = 2 cos2 2t− 1 = 2(2 cos2 t− 1)2 − 1 = 8 cos4 t− 8 cos2 t+ 1

cos 5t = cos 2t cos 3t− sin 2t sin 3t

= (2 cos2 t− 1)(4 cos3 t− 3 cos t)− (2 cos t sin t)(4 cos2 t− 1) sin t

= (2 cos2 t− 1)(4 cos3 t− 3 cos t)− (8 cos3 t− 2 cos t)(1− cos2 t)

= 8 cos5 t− 10 cos3 t+ 3 cos t+ 8 cos5 t− 10 cos3 t+ 2 cos t

= 16 cos5 t− 20 cos3 t+ 5 cos t

cos 6t = 2 cos2 3t− 1 = 2(4 cos3 t− 3 cos t)2 − 1 = 32 cos6 t− 48 cos4 t+ 18 cos2 t− 1

These formulas say that each function in C is a linear combination of the vectors in B. Thus
span(C) ⊂ H. However, the functions in C are linearly independent, thus C is a basis for
span(C) making it seven dimensional, thus must equal H.

Reading off the coefficients starting from cos(0 · t) = 1 and cos(1 · t) = cos t we find

P = PB←C =



1 0 −1 0 1 0 −1

0 1 0 −3 0 5 0

0 0 2 0 −8 0 18

0 0 0 4 0 −20 0

0 0 0 0 8 0 −48

0 0 0 0 0 16 0

0 0 0 0 0 0 32
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We invert using the usual augmented matrix [P, I] and row reduce.

1 0 −1 0 1 0 −1

0 1 0 −3 0 5 0

0 0 2 0 −8 0 18

0 0 0 4 0 −20 0

0 0 0 0 8 0 −48

0 0 0 0 0 16 0

0 0 0 0 0 0 32

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



→



1 0 −1 0 1 0 −1

0 1 0 −3 0 5 0

0 0 1 0 −4 0 9

0 0 0 1 0 −5 0

0 0 0 0 1 0 −6

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1
2 0 0 0 0

0 0 0 1
4 0 0 0

0 0 0 0 1
8 0 0

0 0 0 0 0 1
16 0

0 0 0 0 0 0 1
32



→



1 0 0 0 −3 0 8

0 1 0 0 0 −10 0

0 0 1 0 −4 0 9

0 0 0 1 0 −5 0

0 0 0 0 1 0 −6

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 1
2 0 0 0 0

0 1 0 3
4 0 0 0

0 0 1
2 0 0 0 0

0 0 0 1
4 0 0 0

0 0 0 0 1
8 0 0

0 0 0 0 0 1
16 0

0 0 0 0 0 0 1
32
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→



1 0 0 0 0 0 −10

0 1 0 0 0 0 0

0 0 1 0 0 0 −15

0 0 0 1 0 0 0

0 0 0 0 1 0 −6

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 1
2 0 3

8 0 0

0 1 0 3
4 0 5

8 0

0 0 1
2 0 1

2 0 0

0 0 0 1
4 0 5

16 0

0 0 0 0 1
8 0 0

0 0 0 0 0 1
16 0

0 0 0 0 0 0 1
32



→



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 1
2 0 3

8 0 5
16

0 1 0 3
4 0 5

8 0

0 0 1
2 0 1

2 0 15
32

0 0 0 1
4 0 5

16 0

0 0 0 0 1
8 0 3

16

0 0 0 0 0 1
16 0

0 0 0 0 0 0 1
32


Thus

P−1 =



1 0 1
2 0 3

8 0 5
16

0 1 0 3
4 0 5

8 0

0 0 1
2 0 1

2 0 15
32

0 0 0 1
4 0 5

16 0

0 0 0 0 1
8 0 3

16

0 0 0 0 0 1
16 0

0 0 0 0 0 0 1
32


Because

P = PB←C =
[
[y0]B, . . . , [y6]B

]
for any x ∈ H we have

P [x]C = PB←C [x]C = [x]B.

Premultiplying by the inverse we find

P−1[x]B = [x]C
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thus, P−1 is the unique change of basis matrix, whose columns are basic vectors in coordi-
nates

PC←B = P−1 = P =
[
[x0]C , . . . , [x6]C

]
.

In other words, the columns of P−1 are C-coordinate vectors of the xj ’s. In terms of
expressing the C functions, the powers of cos t, in terms of the B functions we get

cos2 t =
1

2
+

1

2
cos 2t

cos3 t =
3

4
cos t+

1

4
cos 3t

cos4 t =
3

8
+

1

2
cos 2t+

1

8
cos 4t

cos5 t =
5

8
cos t+

5

16
cos 3t+

1

32
cos 5t

cos6 t =
5

16
+

15

32
cos 2t+

3

16
cos 4t+

1

32
cos 6t

10. Determine whether the matrix can be diagonalized. If it can, do so. (text problem 288[33].)

A =



−6 4 0 9

−3 0 1 6

−1 −2 1 0

−4 4 0 7


Expand according to the third column to find the characteristic polynomial.

det(A− λI) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−6− λ 4 0 9

−3 −λ 1 6

−1 −2 1− λ 0

−4 4 0 7− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣

−6− λ 4 9

−1 −2 0

−4 4 7− λ

∣∣∣∣∣∣∣∣∣∣∣∣
+ (1− λ)

∣∣∣∣∣∣∣∣∣∣∣∣

−6− λ 4 9

−3 −λ 6

−4 4 7− λ

∣∣∣∣∣∣∣∣∣∣∣∣
= −[2(6 + λ)(7− λ)− 36 + 4(7− λ)− 72]

+ (1− λ)[λ(6 + λ)(7− λ)− 96− 72 + 24(6 + λ) + 12(7− λ)− 36λ]

= −[−2λ2 − 2λ+ 4] + (1− λ)[−λ3 + λ2 + 18λ+ 24]

= λ4 − 2λ3 +−15λ2 − 4λ+ 20

= (λ− 1)(λ− 5)(λ+ 2)2.
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We find the eigenvectors by solving homogeneous systems. For λ1 = 1, we row reduce
A− λ1I

−7 4 0 9

−3 −1 1 6

−1 −2 0 0

−4 4 0 6


→



1 2 0 0

−3 −1 1 6

−7 4 0 9

−4 4 0 6


→



1 2 0 0

0 5 1 6

0 18 0 9

0 12 0 6


→



1 2 0 0

0 0 1 7
2

0 1 0 1
2

0 0 0 0


So if x4 = 2, x3 = −7, x2 = −1 and x1 = 2. For λ2 = 5, we row reduce A− λ2I

−11 4 0 9

−3 −5 1 6

−1 −2 −4 0

−4 4 0 2


→



1 2 4 0

−3 −5 1 6

−11 4 0 9

−4 4 0 2


→



1 2 4 0

0 1 13 6

0 26 44 9

0 12 16 2



→



1 2 4 0

0 1 13 6

0 0 −294 −147

0 0 −140 −70


→



1 2 4 0

0 1 13 6

0 0 2 1

0 0 0 0


So if x4 = 2, x3 = −1, x2 = −13x3 − 6x4 = 1 and x1 = −2x2 − 4x3 = 2. For λ2 = −2, we
row reduce A− λ2I

−4 4 0 9

−3 2 1 6

−1 −2 3 0

−4 4 0 9


→



1 2 −3 0

−3 2 1 6

−4 4 0 9

−4 4 0 9


→



1 2 −3 0

0 8 −8 6

0 12 −12 9

0 12 −12 9


→



1 2 −3 0

0 4 −4 3

0 0 0 0

0 0 0 0


So if x3 = 1 and x4 = 0 then x2 = 1 and x1 = −2x2 + 3x3 = 1. Also if x3 = 0 and
x4 = 4 then x2 = −3 and x1 = −2x2 + 3x3 = 6. We build our diagonalizing matrix
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P = [v1,v2v3,v4] and check AP = PD.

AP =



−6 4 0 9

−3 0 1 6

−1 −2 1 0

−4 4 0 7





2 −2 1 6

−1 1 1 −3

−7 −1 1 0

2 2 0 4


=



2 10 −2 −12

−1 5 −2 6

−7 −5 −2 0

2 10 0 −8



PD =



2 −2 1 6

−1 1 1 −3

−7 −1 1 0

2 2 0 4





1 0 0 0

0 5 0 0

0 0 −2 0

0 0 0 −2


=



2 10 −2 −12

−1 5 −2 6

−7 −5 −2 0

2 10 0 −8


11. Show that if the n× n matrix A has n linearly independent eigenvectors, then so does AT .

(Use the Diagonalization Theorem.) (Text problem 288[28].)

Recall the Diagonalization Theorem which says that the n × n matrix A is diagonalizable
if and only if A has n independent eigenvectors.

Now since A is diagonalizable, the Diagonalization Theorem implies that A has n indepen-
dent eigenvectors. Put these vectors in as columns P = [p1, . . . ,pn]. Then

AP = PD

where D is the diagonal matrix of eigenvalues corresponding to the pi’s. From this equation
we can see that AT is diagonalizable as well. Namely, taking the transpose of the equation
we find

(AP )T = PTAT = (PD)T = DTPT = DPT

because for diagonal matrices, DT = D. Rearranging,

Q−1AQ = PTAT (PT )−1 = D

which says AT is diagonalizable by the matrix Q = (PT )−1. Again using the Diagonalization
Theorem, the fact that AT is diagonalizable implies that AT has n linearly independent
eigenvectors as desired. In fact, the eigenvectors are the columns of Q = (PT )−1 and the
eigenvalues are the same as for A, namely the diagonals of D.

12. Suppose A is an invertible n×n matrix which is similar to B. Show that then B is invertible
and A−1 is similar to B−1. (Text problem 295[19].)

First we show that B is invertible. Being similar to A implies that there is an invertible
matrix P such that

P−1AP = B.

But the matrices on the left side are invertible so we consider

C = P−1A−1P

We claim that C is the inverse of B, therefore B is invertible. Indeed

CB = P−1A−1P )(P−1AP ) = P−1A−1PP−1AP = P−1A−1AP = P−1P = I,
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thus C is a left inverse of B. But a left inverse is an inverse by the Invertible Matrix
Theorem.

Now taking the inverse of the first equation yields

(P−1AP )−1 = P−1A−1(P−1)−1 = P−1A−1P = B−1

which says that B−1 is similar to A−1 via the same matrix P , as to be shown.

13. For the matrix A, show that it is similar to a composition of a rotation and a scaling. (Text
problem 302[15].)

A =

 1 5

−2 3


First find the complex eigenvalue and eigenvector.

0 = det(A− λI) =

∣∣∣∣∣∣∣∣
1− λ 5

−2 3− λ

∣∣∣∣∣∣∣∣ = (1− λ)(3− λ) + 10 = λ2 − 4λ+ 13

The eigenvalues are thus given by the quadratic formula

λ, λ̄ =
4±
√

16− 4 · 13

2
= 2± 3i.

Now λ = 2 − 3i so a = 2 and b = 3. Let’s find the complex eigenvector for λ = 2 − 3i by
inspection

0 = (A− λI)v =

−1 + 3i 5

−2 1 + 3i


1 + 3i

2


Consider the matrix

P = [<e v,=m v] =

1 3

2 0


We claim that this matrix establishes the similarity to rotation composed with dilation.
Indeed

AP =

 1 5

−2 3


1 3

2 0

 =

11 3

4 −6



P

a −b

b a

 =

1 3

2 0


2 −3

3 2

 =

11 3

4 −6


are the same, as claimed. Let r =

√
a2 + b2 =

√
22 + 32 =

√
13. Then

P−1AP =

2 −3

3 2

 =
√

13

cosφ − sinφ

sinφ cosφ
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where the scaling is dilation by a factor r =
√

13 and the rotation is by an angle φ where

cosφ =
2√
13
, sinφ =

3√
13
.

This says φ = 0.9827937 + 2πk radians for k an integer.

14. Let A be an m× n matrix. Show that

(RowAT )⊥ = NulAT ; (ColAT )⊥ = NulA

The equality of sets is shown by establishing both “⊂” and “⊃.” Technically, vectors in
NulAT are m × 1 column vectors whereas vectors in (RowAT )⊥ are 1 × m row vectors,
but we identify these via transpose. To show (RowAT )⊥ ⊂ NulAT choose an arbitrary
v ∈ (RowAT )⊥. This means v is orthogonal to all vectors in RowAT . However, this
space is spanned by the rows of AT which are the transposes of the columns of A, thus
RowAT = span{aT1 , . . . ,aTn}. In particular aTi • v = 0 for i = 1, . . . , n. Viewing v as a
column vector in Rm, we can write this as matrix multiplication of a 1 ×m matrix times
an m× 1 matrix aTi v

T = 0. But this occurs in matrix multiplication

ATvT =


aT1

...

aTn

vT =


aT1 v

T

...

aTnv
T

 =


0

...

0

 = 0

showing that vT ∈ Nul(AT ), so (RowAT )⊥ ⊂ NulAT as to be shown.

Conversely, if vT ∈ Nul(AT ) then ATvT = 0 which says by the row-column rule for mul-
tiplication that aTi v

T = 0 for every row of AT . But this says the v is orthogonal to the
vectors aT1 , . . .a

T
n . However, these vectors span the row space of AT so that v ∈ (RowAT )⊥

so NulAT ⊂ (RowAT )⊥ as to be shown.

To show (ColAT )⊥ ⊂ NulA, choose an arbitrary vector w ∈ (ColAT )⊥. The column space
ofAT is spanned by the transposes of the rowsRj ofA, namely ColAT = span{RT

1 , . . . , R
T
m}.

Hence w is orthogonal to these RT
j •w = 0 for all j = 1, . . . ,m. Viewing as multiplication

of 1× n matrix by a n× 1 matrices, Rjw = 0 for all j = 1, . . . ,m. By the row-column rule
for multiplication, this says

Aw =


R1

...

Rm

w =


R1w

...

Rmw

 =


0

...

0

 = 0

Hence w ∈ NulA as to be shown so (ColAT )⊥ ⊂ NulA.

Conversely, if w ∈ NulA, by the row-column rule for multiplication, this says Rjw = 0 for
all j = 1, . . . ,m. Thus w is orthogonal to the generating set of ColAT = span(RT

1 , . . . , R
T
m).

It follows that w ∈ (ColAT )⊥ as to be shown so NulA ⊂ (ColAT )⊥.
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15. For the matrix A construct a matrix N whose column form a basis for NulA and construct
another matrix R whose rows form a basis for RowA. Perform a matrix computation that
illustrates a fact from Theorem 3. (Text problem 338[34].)

A =



−6 3 −27 −33 −13

6 −5 25 28 14

8 −6 34 38 18

12 −10 50 41 23

14 −21 49 29 33




−6 3 −27 −33 −13

6 −5 25 28 14

8 −6 34 38 18

12 −10 50 41 23

14 −21 49 29 33


→



1 − 1
2

9
2

11
2

13
6

6 −5 25 28 14

8 −6 34 38 18

12 −10 50 41 23

14 −21 49 29 33



→



1 − 1
2

9
2

11
2

13
6

0 −2 −2 −5 1

0 −2 −2 −6 2
3

0 −4 −4 −25 −3

0 −14 −14 −48 8
3


→



1 − 1
2

9
2

11
2

13
6

0 −2 −2 −5 1

0 0 0 −1 − 1
3

0 0 0 −15 −5

0 0 0 −13 − 13
3



→



1 − 1
2

9
2

11
2

13
6

0 −2 −2 −5 1

0 0 0 −1 − 1
3

0 0 0 0 0

0 0 0 0 0


Thus x3 and x5 are free. It follows that x4 = − 1

3x5, x2 = −x3 − 5
2x4 + 1

2x5 = −x3 + 4
3x5

and x1 = 1
2x2 −

9
2x3 −

11
2 x4 −

13
6 x5 = −5x3 + 1

3x5. The null space and N whose columns
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are a basis of the null space is thus

NulA =





−5x3 − 1
3x5

−x3 + 4
3x5

x3

− 1
3x5

x5


: x3, x5 ∈ R



; N =



−5 1
3

−1 4
3

1 0

0 − 1
3

0 1


.

A matrix R whose rows are a basis of the row space is

R =


1 − 1

2
9
2

11
2

13
6

0 −2 −2 −5 1

0 0 0 −1 − 1
3


Theorem 3 says that (RowA)⊥ = NulA. This is equivalent to all the basis vectors of
RowA, namely the pivotal row vectors of the echelon Ui, i = 1, 2, 3, are orthogonal to all
basis vectors of NulA, namely the columns nj , j = 1, 2. Using the matrix multiplication
version, Uinj = 0 for all i = 1, 2, 3 and j = 1, 2. We can check by matrix multiplication

RN =


1 − 1

2
9
2

11
2

13
6

0 −2 −2 −5 1

0 0 0 −1 − 1
3





−5 1
3

−1 4
3

1 0

0 − 1
3

0 1


=


0 0

0 0

0 0

 .

16. Verify the parallelogram law for vectors u and v in Rn. (Text problem 338[24].)

‖u + v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2.

‖u + v‖2 + ‖u− v‖2 = (u + v) • (u + v) + (u− v) • (u− v)

= (u • u + u • v + v • u + v • v)

+ (u • u− u • v − v • u + v • v)

= 2u • u + 2v • v
= 2‖u‖2 + 2‖v‖2.
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