
Math 2270 § 1.
Treibergs −−σιι

Second Midterm Exam Name: Solutions
October 21, 2015

1. (a) Solve for x2 using Cramer’s Rule.0 1 2
2 3 1
1 0 2

x1x2
x3

 =

3
1
0



x2 =

∣∣∣∣∣∣
0 3 2
2 1 1
1 0 2

∣∣∣∣∣∣∣∣∣∣∣∣
0 1 2
2 3 1
1 0 2

∣∣∣∣∣∣
=

0 + 3 + 0− 0− 12− 2

0 + 1 + 0− 0− 4− 6
=
−11

−9
=

11

9
.

(b) Using determinants, find the area of the triangle whose vertices in the plane are

v1 =

[
1
1

]
, v2 =

[
2
5

]
, v3 =

[
4
9

]
The area of the triangle is half the area of the parallelogram whose sides are v2 − v1

and v3 − v1 thus

A =
1

2
|det([v2 − v1,v3 − v1]) =

1

2

∣∣∣∣ det

(
2− 1 4− 1
5− 1 9− 1

) ∣∣∣∣
=

1

2

∣∣∣∣ det

(
1 3
4 8

) ∣∣∣∣ =
1

2
|1 · 8− 4 · 3| = 1

2
| − 4| = 2.

2. Find the LU factorization of A and check your answer.

A =

 1 2 3
2 3 4
−4 0 −4


Do elementary row operations and record which ones are used. 1 2 3

2 3 4
−4 0 −4

→
1 2 3

0 −1 −2
0 8 8

 Replace R2 by R2 − 2R1

Replace R3 by R3 + 4R1

→

1 2 3
0 −1 −2
0 0 −8


Replace R3 by R3 + 8R2

The matrices L and U are recovered from this. We check

LU =

 1 0 0
2 1 0
−4 −8 1

1 2 3
0 −1 −2
0 0 −8

 =

 1 2 3
2 3 4
−4 0 −4

 .
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3. Suppose that row reduction of A yields the following echelon matrix. For each of the prob-
lems, answer the question with justification or explain why the problem can’t be done from
the information given. Find Col(A). Find det(A). Find Nul(A). Find rank(A).

U =


1 2 3 4 5
0 6 0 7 0
0 0 0 8 9
0 0 0 0 0
0 0 0 0 0


Col(A) spanned by the columns of A corresponding to pivot columns of U . However, the
matrix A is not given so we cannot say what Col(A) is.

The row reduced matrix U has a zero row, thus A is not invertible by the Invertible Matrix
Theorem (RREF is not the identity matrix). Therefore det(A) = 0. Alternately, there are
elementary row operation invertible matrices Ei such that repeated application yields the
echelon matrix.

Ep · Ep−1 · · ·E1 ·A = U

so

det(A) = det(E−1
1 · · ·E−1

p · U)

= det(E−1
1 ) · · · det(E−1

p ) · det(U)

= det(E−1
1 ) · · · det(E−1

p ) · 0 = 0

because det(U) is the product of entries down the diagonal of U which is zero.

Since U is row equivalent to A, Ax = 0 has the same solution set as Ux = 0, namely
Nul(A). x3 and x5 are the only free variables, so they can be set to any real values. Solving
the equations we find

x4 = −9

8
x5; x2 = −7

6
x4 =

21

16
x5;

x1 = −2x2 − 3x3 − 4x4 − 5x5 = −21

8
x5 − 3x3 +

9

2
x5 − 5x5 = −3x3 −

25

8
x5

so the solution is

Nul(A) =




−3x3 − 25

8 x5
21
16x5
x3
− 9

8x5
x5

 : x3, x5 ∈ R

 = span




−3
0
1
0
0

 ,


− 25

8
21
16
0
− 9

8
1


 .

The rank of a matrix is the dimension of its column space, which is the same as the number
of pivot variables which correspond to independent columns. Thus rank(A) = 3.

4. Let H = Col(A) be the column space of the matrix A. Define: B is a basis for the subspace
H ⊂ R4. Is B = {b1,b2,b3} a basis for H? Prove your answer.

A =


1 1 2 0
2 1 1 −1
1 1 0 0
0 1 1 1

 , b1 =


1
1
0
0

 , b2 =


0
1
1
0

 , b3 =


1
0
0
1


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A finite subset of a vector space B ⊂ R4 is a basis for the subspace H if it is linearly
independent and it spans H.

B = {b1,b2,b3} is a basis for H.

First we check linear independence. We see if there are nonzero solutions of the dependence
relation

c1b1 + c2b2 + c3b3 =


1 0 1
1 1 0
0 1 0
0 0 1


c1c2
c3

 =


0
0
0
0


The fourth equation says c3 = 0. The third c2 = 0 and the second c1 = 0. Since only the
trivial combination makes zero, the vectors B are linearly independent.

To see that B spans H, we have to show that each column of A is a linear combination of
the bi’s. Then any vector in H = Col(A) which is a linear combination of the columns of
A is in turn a linear combnation of the bi’s. Inspection shows that

b1 + b2 =


1
1
0
0

+


0
1
1
0

 =


1
2
1
0

 = a1, b2 + b3 =


0
1
1
0

+


1
0
0
1

 =


1
1
1
1

 = a2,

b1 + b3 =


1
1
0
0

+


1
0
0
1

 =


2
1
0
1

 = a3, b3 − b1 =


1
0
0
1

−


1
1
0
0

 =


0
−1
0
1

 = a4.

Thus the columns of A are in the span of B, hence Col(A) is also in the span of B.

Alternately, another check that the ai’s are all in span(B) is showing we can solve for the
3× 4 matrix cij such that

c1jb1 + c2jb1 + c3jb1 = aj

for all j = 1, . . . , 4. In other words such that BC = A. But by row reducing the augmented
matrix [B,A] we see that

1 0 1 1 1 2 0
1 1 0 2 1 1 −1
0 1 0 1 1 0 0
0 0 1 0 1 1 1

→


1 0 1 1 1 2 0
0 1 −1 1 0 −1 −1
0 1 0 1 1 0 0
0 0 1 0 1 1 1



→


1 0 1 1 1 2 0
0 1 −1 1 0 −1 −1
0 0 1 0 1 1 1
0 0 1 0 1 1 1



→


1 0 1 1 1 2 0
0 1 −1 1 0 −1 −1
0 0 1 0 1 1 1
0 0 0 0 0 0 0


Back substituting we find that we have the solution

C =

c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34

 =

1 0 1 −1
1 1 0 0
0 1 1 1

 .

Thus all the columns of A are linear combinations of the bi’s.
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5. Let T : V → W be a mapping between the vector spaces V and W. Define: T is a lin-
ear transformation from V to W. Define: Nul(T ), the null space of the transformation.
Assuming that T is a linear transformation, show that Nul(T ) is a vector subspace.

The mapping T : V → W is a linear transformation if for every u,v ∈ V there holds
T (u+v) = T (u)+T (v) and for every u ∈ V and for every c ∈ R there holds T (cu) = cT (u).

The null space of T is the set of vectors in V that are annihilated by T , namely,

Nul(T ) = {v ∈ V : T (v) = 0}.

To show that Nul(T ) is a vector subspace of V for linear T we have to show that it contains
zero vector and that it is closed under vector addition and scalar multiplication. To see zero
is in the subspace, observe that T (0) = 0 for any linear map, so 0 ∈ Nul(T ). For example,
this is true because for any vector v ∈ V we have by linearity of T ,

T (0) = T (0 · v) = 0 · T (v) = 0.

For the second condition, choose any u,v ∈ Nul(T ). These vectors satisfy the condition to
be in Nul(T ), namely T (u) = 0 and T (v) = 0. Then, by linearity of T , their sum

T (u + v) = T (u) + T (v) = 0 + 0 = 0.

Thus the sum u + v satisfies the condition to belong to Nul(T ). For the third condition,
choose any u ∈ Nul(T ) and any c ∈ R. This vector satisfies the condition to be in Nul(T ),
namely T (u) = 0. Then, by linearity of T , the scalar product

T (cu) = cT (u) = c · 0 = 0.

Thus the scalar product cu satisfies the condition to belong to Nul(T ). This completes the
argument that Nul(T ) contains zero and is closed under both vector addition and scalar
multiplication, and so is a vector subspace of V.
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