Math 2270 § 1. Final Exam Name: Practice Problems
Treibergs November 30, 2015

Half of the final exam will be comprehensive. The other half will focus on material
since the last midterm exam. These problems are representative of this last part of
the course.

1. Show that the orthogonal projection of a vector y € R™ onto a line L through the origin does
not depend on the choice of the nonzero vector u in L used in the formula for y. (Problem
346[31] of the text.)

We shall show that replacing u by another vector w = cu where c is an unspecified nonzero
scalar results in the same vector y. The projection is given by the formula

~ . yeu
Yy =DprojLy = u.
ueu
Let us see what we get if we replace u by w.
yew yecu A(yeun) yeu ~
W= cu = u= u=
Wew cuecu c2(ueu) ueu

which is the same for any c.

2. Given u # 0 in R", let L = span{u}. Fory € R", the reflection of y in L is the point
refly y as in the figure defined by

reflyy =2proj,y —y

Show that the mapping F :y — reflpy is a linear transformation. (Problem 346/34] of the
text.)

Let’s find a formula for refly y. Using the formula for proj; y we see that

uey

F(y) =reflLy =2projy —y =2 u-y

ueu

Now, a linear transformation must preserve vector addition and scalar multiplication.
Choosing y,z € R™ and ¢ € R we see that

F(y +2) ZQWU* (y+z)= (23:iu7y> + (QE:IZIu—z) =F(y)+ F(z);
F(cy) :Q%U— (cy) =c<23:zu—y> = cF(y).



3. Let A be the 8 x 4 matriz given. Find the closest point toy = (1,1,1,1,1,1,1,1)T in Col A.
How far from Col A is it? (Text problems 346/36] and 354[25]).

-6 -3 6 1
-1 2 1 -6
3 6 3 -2
6 -3 6 -1
A=
2 -1 2 3
-3 6 3 2
-2 -1 2 -3
1 2 1 6

Let U be the matrix whose columns have been normalized to length one. Let a; for j =
1,2,3,4 be the columns of A. To compute inner products of the columns we compute A7 A
whose entiries are a; e a;

ATA =

Hence A has orthogonal columns. Also each column has length ||a;|| = \/a; ®a; = 10. Let
U= 11—0A be the matrix with lengths of the columns normalized to length one

-6 -3 6 .1

-1 2 1 6




Note that Col A = ColU. The projection of w € R™ to Col A is given by

uew

Ug e W
ProjeoiaW=(upew)u; +---+(ugew)uy =U =UU"w.

usew

uyew

Applying this to the given y we find

1.2
0.4
1.2
1.2
0.4
1.2

0.4

0.4

¥ = DProjog 4 Y is the closest point in Col A to y. The orthogonal component is

Thus the distance of y to Col A4 is

dist(y,Col A) = ||z|| = vz ez = V1.6 = 1.264911.



4. Find an orthonormal basis for Col A using the Gram-Schmidt process. Find the QR factor-
ization of A. (Text problem 360[12,16].)

Denote the columns A = [a;, as, a3]. Then the Gram-Schmidt algorithm to find an orthog-
onal basis {vy,vavs} is

Vi = ap

az OV
V2 =az — Vi

Vi eV

az e Vv as e Vo
V3 — as — Vi — \%

1
Viev; Vo @ Vo

In terms of the given vectors

1 3 1 -1
-1 -3 -1 1
16
vi=110 |; Ve= 2|70 ]7] 2
1 5 1 1
1 ) 1 1
5 1 -1 3
1 -1 1 3
14 12
Vs=|3 -0 gl 2170
2 1 1 -3
8 1 1 3

This says a; = vy, ag = 4vy + v and ag = %Vl + %vz + v3. These equations written in



matrix form and then pulling out lengths yields

1 3 5 1 -1 3
-1 -3 1 -1 1 3|1 4 %
A=10 2 3|=]l0o 2 offo 1 3
1 5 2 1 1 -=3[\o o0 1
1 5 8 1 1 3
i __1 1
2 22 2
1 1 1 7
5 a5 3 |2 0 o)1 4 ]
= 2 3
0 5% 0|0 2v2 0f]o 1 3
1 1 1
s —3|\0 0 6)\0 01
11 1
2 2y2 2
11 1
2 2y2 2
1 1 1
= 2 =
0 325 0[]0 2v2 3v2|=QR
1 1 1
5 3 3| \0 0 6
i1 1
2 2y2 2

The book recommends another procedure. First determine ) and then find R from @
and A. The lengths are ||v1||? = 4, ||[v2]|?> = 8, and ||v1||? = 36. Dividing each column of
the matrix [vq, va, vs] by its length gives the matrix Q

1 1 1

2 22 2

_1 1 1

2 2v/2 2

Q = 2

0 33 0
1 1 _1

2 22 2

1 1 1

2 22 2



Since QTQ = I, the matrix R = QT(QR) = QT A is obtained by

1 3 5
i -1 0 1 Ll )]l-1 31 2 8 7
R=Q'A=|_L L 2 L Lo 2 3[=[0 2/2 32
T O (R 1 5 2 0 0 6
1 5 8

5. Find the least-squares solution of Ax = b in three ways. What is the least-squares error of
approzimation?

110 1
110 3
A= ., b=
101 8
100 2

The first method is to solve the normal equation for X.
AT Ax = AThb.

Because columns of A are independent, AT A is invertible

11 0
11 1 1 42 1
110
ATA=[1 1 0 o =12 2 0
10 1
0010 10 1
10 0
1
1111 14
3
A'b=111 0 0 =14
8
0010 8
2

Solve by row reducing the augmented matrix [AT A, ATb]
4 2 1 14 1 0 1 8 1 0 1 8 1 0 1 8
220 41712 2 0 4]0 2 -2 —-12(—|0 1 -1 -6

1 01 8 4 2 1 14 0 2 -3 -18 00 1 6



Thus 23 =6, £ = —6 + &3 = 0 and ; = 8 — &3 = 2. Thus the projection of b onto Col A
is

1 10 2
2
1 10 2
1 01 8
6
1 00 2
The perpendicular vector is
1 2 -1
3 2 1
b— AX = — =
8 8 0
2 2 0

so the least-squares error is ||b — AX|| = v/2.

The second method is to replace the columns of A by orthonormal column vectors of A.
Then compute b and X using the orthonormal vectors. Using Gram-Schmidt process,

1
1
Vi =a; =
1
1
1 1 1
as evy 1 2|1 %
V2T AT S e, VT 4 B
1 1 0 1 _%
0 1 —3
0 1 i 0
azev az evy 0 1|1 (—%) % 0
V3 =az — 2= -7 - =
Vi eV Vo @ Vo 4 1 1 1
1 1 ~3 2
o) s 1)\

Then we normalixe the lengths to get the matrix @ with orthonormal columns. The matrix



was constructed so that Col A = Col Q.

1
5 3 0 1
1 1
Vi Vo V3 2 2 0 3
Q: ) ) = ) b=
vl lvll” f[vsll o1 3
2 2 V2
1 1 1
3 T3 T 2

Now the projection is given by

b= pProjeoigb = (a1 eb)q: + (a2 eb)qz + (g3 e b) g3 = Qx.

Compting,
2
qieb 7
< T N > T 2
X=|qgeb| =@ b=] 31, b=0Qx=QQ b=
8
qzeb 3v2
2

which is the same b as before.

The third method is to find X using the QR decomposition. We have the matrix @ with
orthonormal columns such that span{a;} = span{q}, span{a;,as} = span{qi,q2} and
span{aj,as, a3} = span{qi, qz,qs}. Since QT4 = QTQR = IR = R we have

1 1 0
i1 1 1
2 2 2 3 2 1 3
. 110
Re@TA={1 1y o1
1 01
o o L -—L 0 0o L
v2 V2 V2
1 0 0

Because AX = QRX = b = QQTb it means that we solve the triangular system RX = QTb
by back substitution.

1
1 ~ 1 1 1 1

21 3 I 3 5 32 2 7
3

N R N

0 0 % I3 0 0 % —% 3V2
2

Solving yields &3 = 6, 2o = =3+ &3 = 0 and &, = (7 — 22 — 243) = 2, which is the same

X as before.



6. Orthogonally diagonalize the matriz A. (Text problem 401[19].)

3 -2 4
A=|_2 6 2
4 2 3

The characteristic polynomial is

=(B=XN2(6-X)—16—-16—-4(3—X) —4(3—X) —16(6 — \)

3-A 2 4 =(9—6A+ 2D (6 — \) — 152 + 24\
9 G-\ 2 =54 — 45X + 1207 — A% — 152 + 24\
= —(98 + 21\ — 120% + \%)
S (NS G SC TP
For the eigenvalue \; = —2, we row reduce A — A1/
5 -2 4 1 -4 8 1 -4 8 -2
-2 8 2|0 72 36|70 2 1]|> vi=| -1
4 2 5 0 36 1.8 0 0 O 2
x3 is free so take an eigenvector to be x3 = 2, xo = —1 and x1 = .4x9 — .8x3 = —2. For the

eigenvalue Ay = 7, we find two independent eigenvectors by inspection
-4 -2 4 -1 1
(A=Xl)[va,vs] = | —2 -1 2 2 0
4 2 -4 0 1

The A2 = 7 eigenvectors vy and vs are not orthogonal. Apply Gram-Schmidt process to get

-1 1 -1 %

Vzewy (-1 )

Wy = Vo = 2 s W3—V3—W3.W2W2— 0 —T =1z
0 1 0 1

We normalize by dividing columns by their lengths. ||v1|| = 3, |wz|| = V5 and [|[W3]| = %
We get an orthogonal matrix of eigenvectors

_2 _V5 45
3 5 15
P=|_1 25 25
3 5 15
t oo f



so PTP = I. We check that PTAP = D. Indeed it checks

2 V5 4VE 4 75  28V5
3 -2 4 3 5 15 3 775 15

AP=|_9 ¢ 2 1 25 26| =] 2 145 145
3 5 15 3 5 15

2 V5 4 75

4 2 3 5 0 a2 -3 0 o

2 V5 4VB 7V5  28V5

-3 % 13 -2 00 3 T T15

PD=|_1 25 25 o 7 ol=1] 2 14v5 145
3 5 15 3 5 15

2 V5 4 75

: 0 5 0O 0 7 -3 0 5

7. Suppose that both A and B are orthogonally diagonalizable and AB = BA. FExplain why
AB is also orthogonally diagonalizable. (Text problem 401/30].)

This follows from the deep Spectral Theorem.

Theorem 1. Let A be an n X n matriz. Then A is orthogonally diagonalizable if and only
if it is symmetric.

The fact that an orthogonally diagonalizable A is symmetric is not stated as part of the

book’s version, but is easy to prove. A orthogonally diagonalizable means there is an
orthogonal matrix P such that PT AP = D. This implies A = PDPT. But then

AT = (PDP")T = (P")"D"P" = PDP" = A
where we have used transpose of transpose is the identity (P7)T = P and transpose of

diagonal is itself DT = D.
To prove the claim it suffices to show that AB is a symmetric matrix. Indeed

(AB)T = BTAT = BA= AB

where we used the fact that since both are orthogonally diagonalizable we have A and B
are symmetric, and then the hypothesis AB = BA. By the Spectral Theorem, AB is now

orthogonally diagonalizable.

10



8. Classify the quadratic form as positive definite, positive semidefinite, etc. Make a change of
variables x = Py that transforms the quadratic form into one with no cross product terms.
Write the new quadratic form. (Text problem 408[16].)

QRx) = 49:% + 4333 + 4:17% + 4zi + 8x1x0 + 8w314 — 62174 + 61223

The form may be written Q(x) = x7 Ax where

4 0 -3
4 3 0
3 4 4
0 4 4

Let us orthogonally diagonalize A to find P. The eigenvalues are found by expanding the

first row
4-X 4 0 -3
4 4-x 3 0
0 3 4—-)X 4 -
-3 0 44—
4—-X 3 0
=@-=-XN] 3 4-x 4
0 4 44—\

-3 4

4—-A

+3| 0 3

=(4-N*—25(4 - N\)? —4[4(4 — \)? — 36 — 64] + 3[48 — 3(4 — \)? + 27
=(4—-N*" =254 - N2 —16(4 — \)? +625 —9(4 — \)?
= (4N =504 —-N)?+625 =[(4—-N?—25> = (9—N)*(\+1)?

For Ay =9, we get the eigenvectors by row reducing the matrix A — A1

-5 4
4 =5
0 3
-3 0

-8

—1.8

3

—24

0

3

-5

4

.6

—24

4

—-3.2

11




The eigenvectors are thus

4 -5 -5 4 1.8
5 _4 Vo @ W1 _4 (—40) 5 O
LT LT Ty ew T T U
3 0 te 0 3 2.4
0 3 3 0 3

They are not orthogonal. Applying Gram-Schmid we have w; = v; and wy above. For

Ao = —1, we get the eigenvectors by row reducing the matrix A — A\of
5 4 0 -3 1 8 0 -6 1 8 0 —6 1 8 0 —6
4 5 3 0 0 1.8 3 24 0 3 5 4 0 3 5 4
— — —
0 3 5 4 0 3 5 4 0 3 5 4 0 0 0 O
-3 0 4 5 0 24 4 32 0 3 5 4 0 0 0 O

The eigenvectors are thus

4 5 5 4 1.8
=0 -4 Vi e Ws —4 40 | =9 0
V3 = , V4= , Wy =Vy4— —————W3 = _ = _
W3 e W3 50
3 0 0 3 —24
0 3 3 0 3

They are not orthogonal. Applying Gram-Schmid we have w3 = v3 and w4 above. Dividing
by the norms of the columns of [wi, wa, w3, wy| vectors, we finally obtain the orthogonal
matrix

4 -3 4 3

5 0 =5 0

—_
S| ro

3 4 3 -4

0 5 0 5
Changing variables according to x = Py, the quadratic form in the y variable is

Qly) = (Py)" APy = y"P" APy = y" By

12



where

9 0 0 0
09 0 0
B=PTAP =
00 -1 0
00 0 -1

which means that in these coordinates, the quadratic form is
Q(y) = 997 + 95 — v — ui

This means that the form is classified as .

9. Let A = (Z 2) be such that det A # 0 and let Q(x) = xT Ax. Show that if Ay and Ay are
eigenvalues of A, then the characteristic polynomial of A can be written in two ways

X(A) = det(A = AI) = (A1 = A) (A2 = A)

Use this fact to show that trace(A) = a+c¢ = A1+ A2 and det A = A Ay, Verify the following
statements: (Problems 408[23,24] of the text.)

(a) Q is positive definite if det A > 0 and a > 0.

(b) Q is negative definite if det A > 0 and a < 0.

(c) Q is indefinite if det A < 0.

Writing out the determinant we find

det(A — ) = oA ? =(a—N(c—X) —b* =X —(a+c)\+ (ac —b?)

b c— A

The roots of this polynomial are A\; and Ao. By the fundamental theorem of algebra, every
polynomial may be factored into linear factors thus there is a constant k such that

X(A) = k(A = M) (A2 = A) = k[A? = (A1 + Aa) A + A Ao
The powers of A in both expressions have to agree, which implies

k=1; a+c=M\+ Mo det A = ac — b% = M\ Xo.

Using this, we can give the classification of Q without knownig the eigenvalues. If det A < 0
then we know right away that Ay A2 < 0 by the equation so one eigenvalue is positive and
the other is negative. In principal axis coordinates, @ has directions in which it is positive
and directions in which it’s negative, therefore @ is indefinite.

If det A > 0 then A; and Ay are both positive or both negative. Which of these cases
holds can be determined by knowing the sign of trace A which has the same sign as both
eigenvalues. It can also be determined from knowing just the sign of a. det A > 0 implies

ac="0b%+det A >0

If @ > 0 then we must have ¢ > 0 also which implies trace A = a4+ ¢ > 0 so both eigenvalues
are positive and @ is positive definite. If @ < 0 then this says ¢ < 0 and trace A < 0 so @
is negative definite.

13



10. Find the maximum value of Q(x) subject to the constraint x'x = 1. Fnd a unit vector
u where this maximum is attained. Find the mazimum of Q(x) subject to the constraints
xTx =1 and xTu = 0. (Text problem 415[4].)

Q(x) = 327 + 323 + 522 + 6129 + 22123 + 22073

The quadratic form may be written Q(x) = x? Ax where

3 31
A=13 3 1
115

The maximum corresponds to the maximum eigenvalue. Computing the characteristic equa-
tion we find

=B-=XN*B-N+6-203-X)—-9(5-))
s-A 3 — (9= 6A+A2)(5— ) + 11\ — 45
A=| 3 3-) 1 =45 — 30\ + 507 —9A + 617 — A3 + 11\ — 45
= 280+ 1122 — X3 = —A(\? — 11X + 28)
1 1 5-X
= AA=4H\=7)

We find the \; = 7 eigenvector by row reducing A — A1

Thus v; = (1,1,1)T. We find the Ay = 4 eigenvector by row reducing A — o1

-1 3 1 -1 3 1 -1 3 1
3 -1 1|—~]0 8 4]0 8 4
1 1 1 0 4 2 0 0 0

Thus vo = (—1,-1,2)T.
The maximum of Q(x) is 7 corresponding to the largest eigenvalue Ay = 7. The unit vector

@@@)T
3737”3 :

for which it occurs is a normalized eigenvector u = Hzi\l = (

The maximum of Q(x) subject to the constraints x?x = 1 and x”u = 0 is 4 and corresponds
to the second largest eigenvalue Ao = 4 and is taken at the unit vector

T
w = HXEH = (—%, —?, @) which satisfies both constraints.

14



11.

12.

Let A be an n X n symmetric matriz. Let M and m denote the maximum and minimum
values the quadratic form Q(x) = xT Ax where xT'x = 1, and denote the corresponding
eigenvectors uy and u,. Show that for any number t between m and M, there is a unit
vector x such that Q(x) =t. (Text problem 415[13].)

(The problem actually tells you how to do this.) The number ¢ may be obtained as a convex
combination
t=(1—-a)M+am

for some number « € [0, 1]. Consider the vector
x=v1—-—au +vou,.
It satisfies the constraint.
V1i—au + ﬁun)T(Mul +Vau,)

(

11—« uTu1+2 a(l —«a uTun—i—auTun
( 1 1 n
l-a)+04+a=1.

XTX

Because Au; = Mu; and Au, = mu, the quadratic form takes the correct value.
Q(x) = xT Ax

V1—au; +vau,)TAWVT —auw +Vau,)

ul Au; +v/a(l — a) (uf Au, + u? Au)) + au? Au,

(
(I1-a)
= (1—a)Mulu, +/a(1 —a) (mufu, + Mulu,) + amulu,
( )M +0+am =t.

Find the singular value decomposition of the matriz A. (Text problem 425[11].)
-3 1
A=16 -2
6 -2
We find
-3 1
-3 6 6 81 =27
ATA = 6 —2|=
1 -2 -2 =27 9
6 2

The characteristic polynomial is

det(ATA — NI) = (81 — \)(9 — \) — 729 = A\? — 90\
so that the eigenvalues are Ay = 90 and A2 = 0 so the singular values are o1 = /A1 = 310
and g9 = /A2 = 0. The eigenvectors are found by inspection

PO Rl I R B A N
(A A )\1[)V1 = , (A A )\QI)VQ =

—27 =81 1 =27 9 3

15



Normalizing, we find the orthogonal matrix

e o 1 -3 1
V = [viove] = [ Vi Vo }

vl “ivell ] vio |
The singular values give the “diagonal” matrix
3v10 0
=10 0
0 0
The corresponding vector
-3 1 V10 :
3
Auy VT 1
u; = = _ =— | _ =1_2
1 Aw]| 6 2 L 3710 2v/10 3
10
6 —2 vIo —2v/10 -2

generates Col A since A has rank one. uy and uz complete u; to an orthonormal basis of
R3. Two vectors orthogonal to u; satisfy the system x; — 2z, — 23 = 0. Two solutions are

2 2 2 2 2

Wi e Wy 4 A

W1 = Wo = Wo = W9 — —— W1 = —_ = = _Z
1 1] 2 01> 2 2 R— 1 0 5 1 £
0 1 1 0 1

Applying Gram-Schmidt, we can make the second orthogonal to the first. By normalizing
we obtain

1 2 _2

N 3 V5 35

_ uq : W1 7 Vf\\//z _ _2 14
lai]l” |wi]l " [[w2] 3 V5 3v5

2 V5

_g O 30

We have obtained the SVD for A = UXVT. We check

2 2
5= 5= | [3V10 0 V10 0
U¥=]_2 1 __4 =1
5 7 0 2/10 0>
0

w
ot

V10 0
—2/10 0
—2y/10 0

0
0 —2/10 0

AV =1 ¢ -2

=
SRS




13.

14.

Suppose that the m x n matriz A has the singular value decomposition A = ULVT where
U is an m X m orthogonal matriz, ¥ is an m X n “diagonal” matriz with r positive entries
and no negative entries, and V is an n X n orthogonal matriz. Show that the columns of V'
are eigenvectors of AT A, the columns of U are eigenvectors of AAT and that the diagonal
entries of ¥ are the singular values of A. (Text problem 125[19].)

Viewing ¥ as a matrix with r x r diagonal matrix block D = diag(oq,...,0,) in the upper
left corner and zeros elsewhere we see that

STy _ Df, Oy Dirxr 07 (n—r)
0 tnery Ofmryxnry ) \Om—r)xr O@m—r)x(n-r)
_ D, Orx (n—r)
On—ryxr Om—r)x(n-r)
ST _ Dy O (n—r) DT . O{m_r)w
Om—ryxr  Om—ryx(n-r) | \Orx(nr) Ofm—r)x(n-r)
_ Dy, Orx (m—r)

Om—ryxr  O@m—r)x(m-r)
where D? = diag(c1,2...,02). We have A = USV7T so that the matrix AT A acting on the
columns of V yields

ATAV = (UzvDHT(osvhyv = veTuTusv?v = veTs = [o}vy,...,0%v,,0,...,0]
In other words, the ATAV; = og%v; for i = 1,...,n, where oy = 0 if i > r. This says that

the v; are eigenvectors whose eigenvalues \; = o7, namely, the o;’s are singular values of
A. To check that the columns of U are eigenvectors of AA” we compute

AATU = uxvhuzvhHTu = usviveTuTu = usy? = oy, ..., 0%4,,0,...,0]

In other words, the AATu; = o?u; for i = 1,...,m, where o = 0 is 4 > r. This says that
the u; are eigenvectors with eigenvalues \; = o2.

Find the SVD of A. Hint: work with AT. (Text problem 425[13].)
3 2 2
A =
2 3 =2

Note that if we find SVD for A7 = UXV7T then automatically we have the SVD for
A= ANT = wzvhHT =yxTyuT

where U and V reverse roles. Now

3 2
3 2 2 17 8
AAT = 2 3 |=
2 3 -2 8 17
2 -2

17



The characteristic equation is

17—\ 8
=(A—17)% =8 = (A= 9)(\ —25)

8 17—=A

The eigenvalues are A\; = 25 and A — 2 = 9 so that the singular values are o7 = 5 and
o2 = 3. Then we get the 3 x 2 “diagonal” matrix

5 0
=10 3
0 0
We get eigenvectors by inspection
— -8 8 1 . 8 8 -1
(A=MI)vy = ) (A= Xal)vy =
8 -8 1 8 8 1

Normalizing, we find the orthogonal matrix

—~ —~ 1 1
VZ[V1V2}:|:V1 V2:|: V2 V2
’ Vil v R
V2 V2
To construct U we find
5 1
3 2 N 7 3 2 N -7
ATy, = V2o | s , Alv, = V2| = 1
1 2 3 N 7 2 2 3 N 7
2 o) \V? 0 2 -2 v —2V/2

The last column has to be orthogonal to both ATv, and ATv,. Thus it satifies the system

-2
2 2
y=0; y=12
1 1
- s 2V2 1
which we find by inspection. By normalizing we obtain
4 _ 1 2
T T V2 Bv2 ’
po| A Ave vy,
[AT V]| [[AT v Iy vZoosva 3
0 2v2 1

18



By construction we have AT = UXV”. Thus we have our SVD for A = VETUT. We check

.
AU:322¢1§31¢§:¢5§—¢3§0
232fjfj 5 5 0
3v2 3
pur_[F | [P0 o) (% %0

15. Use the pseudoinverse to find the shortest least squares solution of Ax =y. (Like text
problem 368[15] using the method of problem 434[15].)

-3 1 7
A=16 -2, b= |3
6 -2 1

2 2 Ve
3oV | VY 3 1
UsvT=|_2 1 _ _a 0 0 vie  vio
3 V5 3v5 1 3
Vo V10
-2 o ¥ 0 0
The rank of A is r = 1. The reduced SVD is thus
1
3
A=UDVI =] _2 V/ 3 1
- 3 (3 10) ( V1o m)
_2
3
The pseudoinverse is
__3 _ 1 1 1
At —v.p Ul = V10 1 1 5 5\ _ 30 15 15
' ' 1 Wi/ \3 3 3 1 1 1
V10 90 T 45 45
the least squares solution is thus
7
1 2 2 1
% ATD — 30 30 30 5| = 30
12 2 _1
90 90 90 . 90

19



To check, the projection onto Col A = span{as} of b is

1
~ bea, -1

b= —
Az @ Ao a 9 2
-2

On the other hand % solves AX = b
-3 1
3
AX=| ¢ _—9 9% =

_ 1

90

20
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