Math 2270 § 3.	Second Midterm Exam	Name:	Sample
Treibergs σt		October	14, 1998

The following questions are typical of what you might expect on the midterm exam.

$$A = \begin{pmatrix} 1 & 3 & 3 & 1 \\ 1 & 1 & 2 & 2 \\ 2 & 10 & 8 & 0 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} -4 \\ 1 \\ 5 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 3 \\ 25 \\ 19 \end{pmatrix}, \mathbf{z} = \begin{pmatrix} 6 \\ 8 \\ -1 \end{pmatrix}.$$
$$\mathbf{w}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{w}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \mathbf{w}_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

- 1. Let $\mathbf{w} = \mathbf{u} + \mathbf{v}$. Find the angle between \mathbf{u} and \mathbf{v} . Find the area of the triangle whose vertices are $\mathbf{u}, \mathbf{v}, \mathbf{w}$. Find a unit vector perpendicular to both \mathbf{u} and \mathbf{v} . Find the volume of a parallelotope spanned by the vectors \mathbf{u}, \mathbf{v} and \mathbf{w} .
- 2. Let $f : \mathbf{R}^2 \to \mathbf{R}^2$ be defined by the formula f(x, y) = (y, x). Show that f is a linear transformation.
- 3. Show that if the Euclidean vectors $\mathbf{p}, \mathbf{q} \in \mathbf{R}^n$ satisfy the Pythagorean equation $\|\mathbf{p} + \mathbf{q}\|^2 = \|\mathbf{p}\|^2 + \|\mathbf{q}\|^2$ then \mathbf{p} and \mathbf{q} are orthogonal.
- 4. Let $\rho : \mathbf{R}^2 \to \mathbf{R}^2$ be a rotation in the plane by an angle θ . Write a formula for ρ . Show that if $\mathbf{p}, \mathbf{q} \in \mathbf{R}^2$ then \mathbf{p} and $\rho(\mathbf{p})$ have the same length and $\angle(\mathbf{p}, \mathbf{q})$ and $\angle(\rho(\mathbf{p}), \rho(\mathbf{q}))$ are the same angle.
- 5. Find the equation of the plane through \mathbf{u} , \mathbf{v} and \mathbf{z} .
- 6. Find a point on the line $\frac{z-7}{4} = \frac{y-6}{3} = \frac{z+5}{2}$ which is closest to the point (8,9,10).
- 7. Find the distance of the plane in \mathbb{R}^3 satisfying x + 2y + 3z = 4 to the origin.
- 8. Do the curves $\mathbf{z} + s\mathbf{u}$ and $\mathbf{y} + t\mathbf{v}$ intersect?
- 9. Find the equation of the plane which contains the line $\mathbf{u} + t\mathbf{v}$ and the point \mathbf{z} .
- 10. Let $T : \mathbf{R}^3 \to \mathbf{R}^3$ be a linear transformation. Suppose $T(\mathbf{w}_1) = \mathbf{u}$, $T(\mathbf{w}_2) = \mathbf{v}$, $T(\mathbf{w}_3) = \mathbf{y}$. Find $T(\mathbf{z})$. Find a matrix M so that $T(\mathbf{x}) = M\mathbf{x}$.
- 11. Which of the following sets V with operations \oplus and \odot are vector spaces? If (V, \oplus, \odot) is a vector space, give a proof. If not, give a counterexample.
 - (a) $V = \{f : [0,1] \to \mathbf{R}\}$ is the space of all real valued functions on the interval and, $(f \oplus g)(t) = f(t) + g(t), (c \odot f)(t) = cf(t)$ are pointwise addition and scalar multiplication.
 - (b) $V = \{(x, y) \in \mathbf{R}^2 : x \ge 0, y \ge 0\}, (x, y) \oplus (p, q) = (x + p, y + q), c \odot (x, y) = (|c|x, |c|y).$ (c) $V := \mathbf{R}^2, (x, y) \oplus (p, q) = (x + p + 1, y + q + 1), c \odot (x, y) = (cx, cy).$
- 12. Which of the following subsets $W \subset \mathbf{R}^3$ of the usual real vector space $(\mathbf{R}^3, +, \cdot)$ are vector subspaces $(W, +, \cdot)$? Why?
 - (a) $W = \{(0,0,0)\}.$
 - (b) $W = \{(x, y, z) : x + y + z = 1\}.$
 - (c) $W = \{(x, y, z) : x + y + z = 0\}.$

- (d) $W = \{(x, y, z) : xyz = 0\}.$
- 13. Find conditions on $\mathbf{b} = (a, b, c)$ so that $A\mathbf{x} = \mathbf{b}$ is solvable.
- 14. Find a basis for the range of A.
- 15. Find a basis for the row space of A. Find a basis for the row space of A consisting of rows of A.
- 16. Do \mathbf{u} , \mathbf{v} and \mathbf{z} span \mathbf{R}^3 ?
- 17. Are $\{t^2 + t + 1, t^2 3, t^2 + 2t\}$ independent in P_2 , the space of real polynomials of degree ≤ 2 ?
- 18. Let $M_1 = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$ and $M_2 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Find M_3 and M_4 so that $\{M_1, M_2, M_3, M_4\}$ is a basis for $\mathcal{M}_{2,2}$, the space of all real 2×2 matrices.
- 19. Find a basis for the null space of A.
- 20. Let $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k}$ be a set of vectors in a vector space. Show that S is linearly dependent if and only if one of the vectors of S is a linear combination of the all the other vectors of S.
- 21. Let V be a real vector spave with operations \oplus and \odot . Show that the additive identity is unique. Then show that the additive inverse is unique. Finally, show that $(-1) \odot \mathbf{x}$ equals the additive inverse of \mathbf{x} .