Math 2270 § 3.	First Midterm Exam	Name: Sample
Treibergs σt		September 18, 1998

The following questions are typical of what you might expect on the midterm exam. The answer of some questions may be useful to simplify the answer others. A midterm exam might consist of a subset of the problems, *e.g.* $\{(2), (4), (6), (8), (10)\}$.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 3 \\ 1 & -1 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 3 & 1 \\ 1 & 4 & 2 & 2 \\ 1 & -3 & 10 & -6 \end{pmatrix}, c = \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix}, d = \begin{pmatrix} 3 \\ 4 \\ 8 \\ -9 \end{pmatrix}, v = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$

- 1. Solve Ax = c using Gauss-Jordan elimination.
- 2. Find A^{-1} using Gauss-Jordan elimination.
- 3. Solve Ax = c using the inverse matrix.
- 4. Find all solutions if any of Bx = d.
- 5. Find all solutions if any of Bx = v.
- 6. Find $\det A$.

7. Find det
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}.$$

- 8. Solve $Ax = [0, 5, 0]^T$ using Cramer's rule.
- 9. Find A^{-1} using cofactors.
- 10. Let M be an $m \times n$ matrix. Show that if Mx = w has two solutions then it has infinitely many.
- 11. Show that the inverse of the transpose of a square matrix Q is the transpose of the inverse:

$$(Q^T)^{-1} = (Q^{-1})^T.$$

12. Show that if a 4 × 3 matrix M is row equivalent to $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ then the system Mx = k

either has no solution or has exactly one solution. What conditions on k guarantee that there is a solution at all?